Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(6): 1781-1794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573338

RESUMO

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 µM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cardiomiopatias , Ferroptose , Heme Oxigenase-1 , Miócitos Cardíacos , Estresse Oxidativo , Animais , Camundongos , Ratos , Antibióticos Antineoplásicos/toxicidade , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiotoxicidade , Linhagem Celular , Cicloexilaminas , Doxorrubicina/toxicidade , Ferroptose/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fenilenodiaminas , Protoporfirinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Mater Today Bio ; 25: 100968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38312801

RESUMO

Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface. Theoretical calculation revealed that the presence of nanotexture reduced the polar component of surface energy, while the generation of anatase significantly enhanced the polar component and total surface energy. Meanwhile, the modified surface with regular nanotexture and anatase phase produced positive effect on the expression of CD31, VE-Cadherin and down-regulated α-SMA proteins expression, indicating excellent capacity of pro-endothelial regeneration and inhibition of SMCs proliferation and migration. One-month in vivo implantation in rabbit carotid arteries further confirmed that modified tube implant surface effectively accelerated confluent endothelial monolayer formation and promoted native-like endothelium tissue regeneration. By contrast, original titanium tube implant induced a disorganized tissue proliferation in the lumen with a high risk of restenosis. Collectively, this study opens us an alternative route to achieve the function that selectively promotes endothelial cells (ECs) growth and suppresses SMCs on the medical titanium surface, which has a great potential in facilitating re-endothelialization on the surface of blood-contacting titanium implant.

3.
Adv Healthc Mater ; 12(31): e2301517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689990

RESUMO

Photodynamic therapy is a promising cancer therapeutic method that can damage DNA via photoinduced reactive oxygen species production. However, tumor cells can initiate DNA repair pathways to resist oxidative damage. In this study, a nuclear-targeted photosensitizer PARP-PS with a poly (ADP-ribose) polymerase 1 (PARP1) inhibitory effect is developed based on the reported PARP1 inhibitor, rucaparib. As a dual-mode DNA-damaging agent, PARP-PS damages DNA upon photoirradiation and enhances oxidative DNA damage by blocking the DNA repair pathway via PARP1 inhibition and degradation. Both in vitro and in vivo investigations demonstrate that PARP-PS exhibits high antitumor activity with few side effects in breast cancer. In addition, PARP-PS can act as an immunogenic cell death inducer to activate immune responses characterized by the promotion of cytotoxic T lymphocyte activation and tumor infiltration. Therefore, PARP-PS is a potential multimodal antitumor agent with synergistic phototherapeutic, chemotherapeutic, and immunotherapeutic effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dano ao DNA , Neoplasias da Mama/tratamento farmacológico , DNA , Linhagem Celular Tumoral , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética
4.
Int Immunopharmacol ; 124(Pt A): 110827, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619411

RESUMO

Recent emerging evidence reveals that cGAS-STING-mediated Type I interferon (IFN) signaling axis takes part in the microglial-associated neuroinflammation. However, the potential role of pharmacological inhibition of STING on neuroinflammation and dopaminergic neurodegeneration remains unknown. In the present study, we investigated whether pharmacological inhibition of STING attenuates neuroinflammation and neurodegeneration in experimental models of Parkinson's disease. We report that therapeutic inhibition of STING with C-176 significantly inhibited the activation of downstream signaling pathway, suppressed neuroinflammation, and ameliorated MPTP-induced dopaminergic neurotoxicity and motor deficit. Furthermore, pharmacological inhibition of STING with C-176 attenuated proinflammatory response in BV2 microglial cells exposed to LPS/MPP+. More importantly, C-176 also reduced NLRP3 inflammasome activation both in vitro and in vivo. The results of our study suggest that pharmacologic inhibition of STING protects against dopaminergic neurodegeneration and neuroinflammation that may act at least in part through suppressing NLRP3 inflammasome activation. STING signaling may hold great promise for the development of new treatment strategy for PD.

5.
J Med Chem ; 66(15): 10265-10272, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421416

RESUMO

In this work, we described a photocatalytic approach, termed ligand-directed photodegradation of interacting proteins (LDPIP), for efficient protein-protein heterodimer degradation. This LDPIP approach utilizes a combination of a photosensitizing protein ligand and appropriate light and molecular oxygen to induce oxidative damage to the ligand-binding protein as well as its interacting protein partner. As a showcase study, a photosensitizing HER2 ligand HER-PS-I was rationally designed based on the FDA-approved HER2 inhibitor lapatinib to efficiently degrade HER2 together with its interacting protein partner HER3, which is thought to induce HER2-targeted therapy resistance and difficult to target by small molecules. HER-PS-I exhibited excellent anticancer activity against drug-resistant MDA-MB-453 cells and its three-dimensional multicellular spheroids. We hope that this LDPIP approach would find more applications in degrading proteins that are thought undruggable or difficult to drug.


Assuntos
Antineoplásicos , Lapatinib/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Trastuzumab , Receptor ErbB-2/metabolismo , Ligantes , Fotólise , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-3/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
6.
Eur J Med Chem ; 255: 115418, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119664

RESUMO

Development of safe and effective photosensitizers is important for enhancing the efficacy of photodynamic cancer therapy. Phenalenone is a type II photosensitizer with a high singlet oxygen quantum yield; however, its short UV absorption wavelength hinders its application in cancer imaging and in vivo photodynamic therapy. In this study, we report a new redshift phenalenone derivative, 6-amino-5-iodo-1H-phenalen-1-one (SDU Red [SR]), as a lysosome-targeting photosensitizer for triple-negative breast cancer therapy. SDU Red produced singlet oxygen (Type II reactive oxygen species [ROS]) and superoxide anion radicals (Type I ROS) upon light irradiation. It also exhibited good photostability and a remarkable phototherapeutic index (PI > 76) against triple-negative breast cancer MDA-MB-231 cancer cells. Additionally, we designed two amide derivatives, SRE-I and SRE-II, with decreased fluorescence and photosensitizing capabilities based on SDU Red as activatable photosensitizers for photodynamic cancer therapy. SRE-I and SRE-II could be further converted into the active photosensitizer SDU Red via carboxylesterase-catalyzed amide bond cleavage. Moreover, SDU Red and SRE-II induced DNA damage and cell apoptosis in the presence of light. Therefore, SRE-II can act as a promising theranostic agent for triple-negative breast cancer.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Oxigênio Singlete/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fotoquimioterapia/métodos
7.
Neuropharmacology ; 207: 108963, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065082

RESUMO

Microglia-mediated neuroinflammation and mitochondrial dysfunction play critical role in the pathogenic process of Parkinson's disease (PD). Mitophagy plays central role in mitochondrial quality control. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia-mediated neurodegeneration and neuroinflammation. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA). Several preclinical studies have reported the beneficial effects of UA on age-related conditions by increasing mitophagy and blunting excessive inflammatory responses. However, the specific role of UA in pathology of PD remains unknown. In this study, we showed that treatment with UA reduced the loss of dopaminergic neurons, ameliorated behavioral deficits and neuroinflammation in MPTP mouse model of PD. Further study revealed that UA promotes mitophagy, restores mitochondrial function and attenuate proinflammatory response in BV2 microglial cells exposed to LPS. Moreover, UA also reduced NLRP3 inflammasome activation both in vitro and in vivo. Importantly, disruption of microglial mitophagy with pharmacological or genetic approach partly blunted the neuroprotective effects of UA in MPTP mouse model of PD. Collectively, these results provide strong evidence that UA protects against dopaminergic neurodegeneration and neuroinflammation. The mechanism may be related with its inhibition of NLRP3 inflammasome activation via promoting mitophagy in microglia.


Assuntos
Cumarínicos/farmacologia , Inflamassomos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
8.
Food Funct ; 13(1): 375-385, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34905594

RESUMO

Mitochondrial dysfunction contributes to the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). Therapeutic strategies targeting mitochondrial dysfunction hold considerable promise for the treatment of PD. Recent reports have highlighted the protective role of urolithin A (UA), a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries and walnuts, in several neurological disorders including Alzheimer's disease and ischemic stroke. However, the potential role of UA in PD has not been characterized. In this study, we investigated the underlying mechanisms for role of UA in 6-OHDA-induced neurotoxicity in cell cultures and mice model of PD. Our results revealed that UA protected against 6-OHDA cytotoxicity and apoptosis in PC12 cells. Meanwhile, administration of UA to 6-OHDA lesioned mice ameliorated both motor deficits and nigral-striatal dopaminergic neurotoxicity. More important, UA treatment significantly attenuated 6-OHDA-induced mitochondrial dysfunction in PC12 cells accompanied by enhanced mitochondrial biogenesis. Mechanistically, we demonstrated that UA exerts neuroprotective effects by promoting mitochondrial biogenesis via SIRT1-PGC-1α signaling pathway. Taken together, these data provide new insights into the novel role of UA in regulating mitochondrial dysfunction and suggest that UA may have potential therapeutic applications for PD.


Assuntos
Cumarínicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Células PC12 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
9.
Brain Behav Immun ; 91: 324-338, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039664

RESUMO

Microglia-mediated inflammation plays an important role in the pathogenesis of several neurodegenerative diseases including Parkinson's disease (PD). Recently, autophagy has been linked to the regulation of the inflammatory response. However, the potential role of microglial autophagy in the context of PD pathology has not been characterized. In the present study, we investigated whether impaired microglial autophagy would affect dopaminergic neurodegeneration and neuroinflammation both in vivo and in vitro. In vitro, BV2 microglial cells were exposed to LPS in the presence or absence of autophagy-related gene 5 (Atg5) small interference RNA (Atg5-siRNA). For in vivo study, microglial Atg5 conditional knockout (Atg5flox/flox; CX3CR1-Cre) mice and their wild-type littermates (Atg5flox/flox) were intraperitoneally injected with MPTP to induce experimental PD model. Our results revealed that disruption of autophagy by Atg5-siRNA aggravated LPS-induced inflammatory responses in BV2 cells and caused greater apoptosis in SH-SY5Y cells treated with BV2 conditioned medium. In mice, impaired autophagy in microglia exacerbated dopaminergic neuron loss in response to MPTP. The mechanism by which the deficiency of microglial autophagy promoted neuroinflammation and dopaminergic neurodegeneration was related to the regulation of NLRP3 inflammasome activation. These findings demonstrate that impairing microglial autophagy aggravates pro-inflammatory responses to LPS and exacerbates MPTP-induced neurodegeneration by modulating NLRP3 inflammasome responses. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for PD.


Assuntos
Microglia , Doença de Parkinson , Animais , Autofagia , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamassomos , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
Molecules ; 23(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29351226

RESUMO

This study aimed to investigate the protective effect of curcumin against carbon tetrachloride (CCl4)-induced acute liver injury in a mouse model, and to explain the underlying mechanism. Curcumin at doses of 50, 100 and 200 mg/kg/day were administered orally once daily for seven days prior to CCl4 exposure. At 24 h, curcumin-attenuated CCl4 induced elevated serum transaminase activities and histopathological damage in the mouse's liver. Curcumin pre-treatment at 50, 100 and 200 mg/kg significantly ameliorated CCl4-induced oxidative stress, characterized by decreased malondialdehyde (MDA) formations, and increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) content, followed by a decrease in caspase-9 and -3 activities. Curcumin pre-treatment significantly decreased CCl4-induced inflammation. Furthermore, curcumin pre-treatment significantly down-regulated the expression of TGF-ß1 and Smad3 mRNAs (both p < 0.01), and up-regulated the expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) and HO-1 mRNA (both p < 0.01) in the liver. Inhibition of HO-1 attenuated the protective effect of curcumin on CCl4-induced acute liver injury. Given these outcomes, curcumin could protect against CCl4-induced acute liver injury by inhibiting oxidative stress and inflammation, which may partly involve the activation of Nrf2/HO-1 and inhibition of TGF-ß1/Smad3 pathways.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Curcumina/farmacologia , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Tetracloreto de Carbono/efeitos adversos , Caspase 3/metabolismo , Caspase 9/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Testes de Função Hepática , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA