Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Plant Biotechnol J ; 22(5): 1164-1176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38070185

RESUMO

Soybean is a short-day plant that typically flowers earlier when exposed to short-day conditions. However, the identification of genes associated with earlier flowering time but without a yield penalty is rare. In this study, we conducted genome-wide association studies (GWAS) using two re-sequencing datasets that included 113 wild soybeans (G. soja) and 1192 cultivated soybeans (G. max), respectively, and simultaneously identified a candidate flowering gene, qFT13-3, which encodes a protein homologous to the pseudo-response regulator (PRR) transcription factor. We identified four major haplotypes of qFT13-3 in the natural population, with haplotype H4 (qFT13-3H4) being lost during domestication, while qFT13-3H1 underwent natural and artificial selection, increasing in proportion from 4.5% in G. soja to 43.8% in landrace and to 81.9% in improve cultivars. Notably, most cultivars harbouring qFT13-3H1 were located in high-latitude regions. Knockout of qFT13-3 accelerated flowering and maturity time under long-day conditions, indicating that qFT13-3 functions as a flowering inhibitor. Our results also showed that qFT13-3 directly downregulates the expression of GmELF3b-2 which is a component of the circadian clock evening complex. Field trials revealed that the qft13-3 mutants shorten the maturity period by 11 days without a concomitant penalty on yield. Collectively, qFT13-3 can be utilized for the breeding of high-yield cultivars with a short maturity time suitable for high latitudes.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Melhoramento Vegetal , Haplótipos/genética , Fotoperíodo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética
2.
Plant Dis ; 108(1): 45-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555725

RESUMO

Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.


Assuntos
Genômica , Xanthomonas , Tipagem de Sequências Multilocus , Xanthomonas/genética
3.
Nat Commun ; 14(1): 6813, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884530

RESUMO

Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Melhoramento Vegetal , Fenótipo , Retroelementos
4.
Mol Breed ; 43(9): 71, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663546

RESUMO

The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01414-z.

5.
BMC Pediatr ; 23(1): 420, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620840

RESUMO

BACKGROUND: Hepatocellular adenomas (HCAs) are rare benign tumors of the liver that occur predominantly in women taking oral contraceptives. In children, HCAs comprise < 5% of hepatic tumors. We report a case of HCAs in a 7-year-old girl with estrogen and glucose imbalance. CASE PRESENTATION: A 7-year-old girl was presented to our hospital with bilateral breast enlargement for 2 months, polydipsia, polyuria, polyphagia, hyperglycemia, and significant weight gain. Computed tomography (CT) showed a 7.2 cm×6.9 cm×5.3 cm round-shaped mass in the left inner lobe of the liver, ovarian ultrasound showed multiple follicles in the ovaries bilaterally, and cranial magnetic resonance imaging (MRI) showed an enlarged superior pituitary. Hematological and biochemical results were as follows: fasting glucose was 19.7 mmol/L, estradiol was 122.9 pmol/L, follicle-stimulating hormone 10.81 IU/L, luteinizing hormone 10.99 IU/L, insulin-like growth factor 1,513 ng/mL, glutamine aminotransferase 86 U/L, and alkaline phosphatase 362 U/L. Thyroid functions, methemoglobin, fetal protein, carcinoembryonic antigen, and chorionic gonadotropin were normal. The patient had a complete surgical resection of the liver tumor, and the postoperative histopathological diagnosis was HCAs. After the surgery, insulin was injected and the glucose levels were stable. During the 36-month follow-up period, neither tumor recurrence nor significant abnormalities were detected using color Doppler ultrasound of the liver. The child's precocious puberty is currently under control. CONCLUSIONS: HCAs are particularly rare in children with liver tumors, and risk factors for the development of HCAs in children include sex hormone imbalance, obesity, Fanconi anemia (FA), glycogen storage diseases (GSDs) type I, III, and IV, galactosemia, immunodeficiency, congenital portosystemic shunts (CPSS), cardiac hepatopathy status-post Fontan procedure, Hurler syndrome, familial adenomatous polyposis, germline HNF1A mutations, and maturity-onset diabetes of the young type 3. Most HCAs are detected during a physical examination without clinical symptoms, and some patients may present with symptoms such as abdominal pain, abdominal distension, and abdominal masse. Serum liver function tests can show increased alkaline phosphatase (ALP) and γ- glutamyl transferase (GT), whereas α-Fetoprofein (AFP) levels are normal. The definitive diagnosis relies mainly on histopathological examination. Because HCAs can rupture and bleed and become malignant. Early surgical treatment is recommended after detection.


Assuntos
Adenoma de Células Hepáticas , Neoplasias Hepáticas , Criança , Humanos , Feminino , Adenoma de Células Hepáticas/diagnóstico , Adenoma de Células Hepáticas/cirurgia , Fosfatase Alcalina , Recidiva Local de Neoplasia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia
6.
Mol Plant ; 16(7): 1178-1191, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37433301

RESUMO

Pod coloration is a domestication-related trait in soybean, with modern cultivars typically displaying brown or tan pods, while their wild relative, Glycine soja, possesses black pods. However, the factors regulating this color variation remain unknown. In this study, we cloned and characterized L1, the classical locus responsible for black pods in soybean. By using map-based cloning and genetic analyses, we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A (CoA) lyase-like (HMGL-like) domain protein. Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid, both of which contribute to coloration of pods and seed coats in soybean. Interestingly, we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency. Hence, pleiotropic effects of L1 on pod color and shattering, as well as seed pigmentation, likely contributed to the preference for l1 alleles during soybean domestication and improvement. Collectively, our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication of legume crops.


Assuntos
Fabaceae , Glycine max , Glycine max/genética , Locos de Características Quantitativas/genética , Domesticação , Fabaceae/genética , Sementes/genética , Pigmentação/genética
7.
Mol Breed ; 43(5): 37, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37312749

RESUMO

The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.

8.
Plant Dis ; 107(11): 3542-3552, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37194211

RESUMO

Xanthomonas fragariae usually causes angular leaf spot (ALS) of strawberry, a serious bacterial disease in many strawberry-producing regions worldwide. Recently, a new strain of X. fragariae (YL19) was isolated from strawberry in China and has been shown to cause dry cavity rot in strawberry crown. In this study, we constructed a green fluorescent protein (GFP)-labeled Xf YL19 (YL19-GFP) to visualize the infection process and pathogen colonization in strawberries. Foliar inoculation of YL19-GFP resulted in the pathogen migrating from the leaves to the crown, whereas dip inoculation of wounded crowns or roots resulted in the migration of bacteria from the crowns or roots to the leaves. These two invasion types both resulted in the systematic spread of YL19-GFP, but inoculation of a wounded crown was more harmful to the strawberry plant than foliar inoculation. Results increased our understanding of the systemic invasion of X. fragariae, and the resultant crown cavity caused by Xf YL19.


Assuntos
Fragaria , Xanthomonas , Fragaria/microbiologia , China
9.
Plant Physiol ; 192(4): 2737-2755, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086480

RESUMO

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis. Previous studies on CHLI have mainly focused on model plant species, and its functions in other species have not been well described, especially with regard to leaf coloration and metabolism. In this study, we identified and characterized a CHLI mutant in strawberry species Fragaria pentaphylla. The mutant, noted as p240, exhibits yellow-green leaves and a low Chl level. RNA-Seq identified a mutation in the 186th amino acid of the CHLI subunit, a base conserved in most photosynthetic organisms. Transient transformation of wild-type CHLI into p240 leaves complemented the mutant phenotype. Further mutants generated from RNA-interference (RNAi) and CRISPR/Cas9 gene editing recapitulated the mutant phenotype. Notably, heterozygous chli mutants accumulated more Chl under low light conditions compared with high light conditions. Metabolite analysis of null mutants under high light conditions revealed substantial changes in both nitrogen and carbon metabolism. Further analysis indicated that mutation in Glu186 of CHLI does not affect its subcellular localization nor the interaction between CHLI and CHLD. However, intramolecular interactions were impaired, leading to reduced ATPase and MgCh activity. These findings demonstrate that Glu186 plays a key role in enzyme function, affecting leaf coloration via the formation of the hexameric ring itself, and that manipulation of CHLI may be a means to improve strawberry plant fitness and photosynthetic efficiency under low light conditions.


Assuntos
Fragaria , Liases , Mutação Puntual , Fragaria/genética , Fragaria/metabolismo , Liases/genética , Liases/metabolismo , Mutação/genética , Adenosina Trifosfatases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clorofila/metabolismo
10.
Theor Appl Genet ; 136(3): 50, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912956

RESUMO

KEY MESSAGE: IBD analysis clarified the dynamics of chromosomal recombination during the ZP pedigree breeding process and identified ten genomic regions resistant to SCN race3 combining association mapping. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pathogens for soybean production worldwide. The cultivar Zhongpin03-5373 (ZP), derived from SCN-resistant progenitor parents, Peking, PI 437654 and Huipizhi Heidou, is an elite line with high resistance to SCN race3. In the current study, a pedigree variation map was generated for ZP and its ten progenitors using 3,025,264 high-quality SNPs identified from an average of 16.2 × re-sequencing for each genome. Through identity by decent (IBD) tracking, we showed the dynamic change of genome and detected important IBD fragments, which revealed the comprehensively artificial selection of important traits during ZP breeding process. A total of 2,353 IBD fragments related to SCN resistance including SCN-resistant genes rhg1, rhg4 and NSFRAN07 were identified based on the resistant-related genetic paths. Moreover, 23 genomic regions underlying resistance to SCN race3 were identified by genome-wide association study (GWAS) in 481 re-sequenced cultivated soybeans. Ten common loci were found by both IBD tracking and GWAS analysis. Haplotype analysis of 16 potential candidate genes suggested a causative SNP (C/T, - 1065) located in the promoter of Glyma.08G096500 and encoding a predicted TIFY5b-related protein on chr8 was highly correlated with SCN race3 resistance. Our results more thoroughly elucidated the dynamics of genomic fragments during ZP pedigree breeding and the genetic basis of SCN resistance, which will provide useful information for gene cloning and the development of resistant soybean cultivars using a marker-assisted selection approach.


Assuntos
Glycine max , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Genes de Plantas , Resistência à Doença/genética , Doenças das Plantas/genética
11.
J Integr Plant Biol ; 65(1): 117-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36218273

RESUMO

Advances in plant phenotyping technologies are dramatically reducing the marginal costs of collecting multiple phenotypic measurements across several time points. Yet, most current approaches and best statistical practices implemented to link genetic and phenotypic variation in plants have been developed in an era of single-time-point data. Here, we used time-series phenotypic data collected with an unmanned aircraft system for a large panel of soybean (Glycine max (L.) Merr.) varieties to identify previously uncharacterized loci. Specifically, we focused on the dissection of canopy coverage (CC) variation from this rich data set. We also inferred the speed of canopy closure, an additional dimension of CC, from the time-series data, as it may represent an important trait for weed control. Genome-wide association studies (GWASs) identified 35 loci exhibiting dynamic associations with CC across developmental stages. The time-series data enabled the identification of 10 known flowering time and plant height quantitative trait loci (QTLs) detected in previous studies of adult plants and the identification of novel QTLs influencing CC. These novel QTLs were disproportionately likely to act earlier in development, which may explain why they were missed in previous single-time-point studies. Moreover, this time-series data set contributed to the high accuracy of the GWASs, which we evaluated by permutation tests, as evidenced by the repeated identification of loci across multiple time points. Two novel loci showed evidence of adaptive selection during domestication, with different genotypes/haplotypes favored in different geographic regions. In summary, the time-series data, with soybean CC as an example, improved the accuracy and statistical power to dissect the genetic basis of traits and offered a promising opportunity for crop breeding with quantitative growth curves.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Mapeamento Cromossômico , Glycine max/genética , Fatores de Tempo , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
Sci China Life Sci ; 66(2): 350-365, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35997916

RESUMO

Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.


Assuntos
Glycine max , Melhoramento Vegetal , Glycine max/genética , Genoma de Planta/genética , Locos de Características Quantitativas , China
13.
Plants (Basel) ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202405

RESUMO

Salinity greatly affects the production of soybeans in arid and semi-arid lands around the world. The responses of soybeans to salt stress at germination, emergence, and other seedling stages have been evaluated in multitudes of studies over the past decades. Considerable salt-tolerant accessions have been identified. The association between salt tolerance responses during early and later growth stages may not be as significant as expected. Genetic analysis has confirmed that salt tolerance is distinctly tied to specific soybean developmental stages. Our understanding of salt tolerance mechanisms in soybeans is increasing due to the identification of key salt tolerance genes. In this review, we focus on the methods of soybean salt tolerance screening, progress in forward genetics, potential mechanisms involved in salt tolerance, and the importance of translating laboratory findings into field experiments via marker-assisted pyramiding or genetic engineering approaches, and ultimately developing salt-tolerant soybean varieties that produce high and stable yields. Progress has been made in the past decades, and new technologies will help mine novel salt tolerance genes and translate the mechanism of salt tolerance into new varieties via effective routes.

15.
Theor Appl Genet ; 135(11): 4095-4121, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36239765

RESUMO

KEY MESSAGE: Genetic resources contributes to the sustainable protein production in soybean. Soybean is an important crop for food, oil, and forage and is the main source of edible vegetable oil and vegetable protein. It plays an important role in maintaining balanced dietary nutrients for human health. The soybean protein content is a quantitative trait mainly controlled by gene additive effects and is usually negatively correlated with agronomic traits such as the oil content and yield. The selection of soybean varieties with high protein content and high yield to secure sustainable protein production is one of the difficulties in soybean breeding. The abundant genetic variation of soybean germplasm resources is the basis for overcoming the obstacles in breeding for soybean varieties with high yield and high protein content. Soybean has been cultivated for more than 5000 years and has spread from China to other parts of the world. The rich genetic resources play an important role in promoting the sustainable production of soybean protein worldwide. In this paper, the origin and spread of soybean and the current status of soybean production are reviewed; the genetic characteristics of soybean protein and the distribution of resources are expounded based on phenotypes; the discovery of soybean seed protein-related genes as well as transcriptomic, metabolomic, and proteomic studies in soybean are elaborated; the creation and utilization of high-protein germplasm resources are introduced; and the prospect of high-protein soybean breeding is described.


Assuntos
Glycine max , Proteínas de Soja , Humanos , Glycine max/genética , Proteômica , China
16.
Front Plant Sci ; 13: 899212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783980

RESUMO

The soybean aphid poses a severe threat to soybean quality and yield by sucking phloem sap and transmitting plant viruses. An early-maturing and highly resistant soybean landrace, Fangzheng Moshidou, with markedly reduced aphid colonization has been identified by screening of aphid-resistant soybean accessions. In a population derived from the cross of Fangzheng Moshidou with the susceptible cultivar Beifeng 9, resistance was conferred by a single dominant gene. Three linked markers, Satt114, Satt334, and Sct_033, on chromosome 13 were identified by bulked-segregant analysis. Additional simple-sequence repeat and single-nucleotide polymorphism (SNP) markers were developed for gene mapping. The resistance of Fangzheng Moshidou was fine-mapped to the interval between the SNP markers YCSNP20 and YCSNP80, corresponding to 152.8 kb in the Williams 82 assembly 2 genome. This region was near the reported loci Rag2 and Rag5 but did not overlap the interval containing them. A unique haplotype is described for Fangzheng Moshidou that distinguishes it from soybean accessions PI 587972, PI 594879, and PI 567301B in the interval containing Rag2 and Rag5. These results indicate that Fangzheng Moshidou harbors a novel gene at a tightly linked resistance locus, designated as RagFMD. Fourteen candidate genes were annotated in the fine-mapping region, including seven NBS-LRR genes, which are usually considered resistance genes in plant defense. Most of these candidate genes showed variations distinguishing the resistant and susceptible parents and some genes also showed differences in expression between the two parental lines and at several times after aphid infestation. Isolation of RagFMD would advance the study of molecular mechanisms of soybean aphid resistance and contribute to precise selection of resistant soybeans.

17.
Patient Prefer Adherence ; 16: 1351-1358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35642245

RESUMO

Purpose: This study aimed to examine the relationship between anxiety, depression, sleep quality and health-related quality of life among systemic lupus erythematosus (SLE) patients in China. Patients and Methods: After ethical approval and obtaining participants' informed consent, a cross-sectional study was conducted in The First Affiliated Hospital of Anhui Medical University between October 1, 2021 and January 30, 2022. The data comprised demographic information, number of SLE symptoms, Hospital Anxiety and Depression Scale (HADS), Pittsburgh Sleep Quality Index (PSQI) and Systemic Lupus Erythematosus-Specific Quality of Life Questionnaire (SLEQoL). We performed descriptive statistics, Spearman or Pearson correlations, and multiple linear regression. And Path analysis was performed to examine direct and indirect associations between these variables and health-related quality of life. Results: A total of 580 patients were recruited and 513 met our target criteria. Our final model fitted the data well: goodness-of-fit index (GFI) =0.996; adjusted goodness-of-fit index (AGFI) =0.974; comparative fit index (CFI) =0.998; root mean square error of approximation (RMSEA) =0.043. This model explained 57.3% of the variance on health-related quality of life (HRQoL) in patients with SLE and all the hypothesized paths reached significance (P<0.05). Anxiety, depression, sleep quality, income/family, and number of SLE symptoms were related to health-related quality of life, and anxiety had the most influence on HRQoL (ß=0.561). Conclusion: The study model helps to explain the relation among anxiety, depression, sleep quality and health-related quality of life in patients with SLE. It also suggests that health care professionals should be aware of factors such as anxiety, sleep quality, number of SLE symptoms, and depression in their care for HRQoL of SLE patients.

18.
Front Plant Sci ; 13: 1012293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589058

RESUMO

The estimation of yield parameters based on early data is helpful for agricultural policymakers and food security. Developments in unmanned aerial vehicle (UAV) platforms and sensor technology help to estimate yields efficiency. Previous studies have been based on less cultivars (<10) and ideal experimental environments, it is not available in practical production. Therefore, the objective of this study was to estimate the yield parameters of soybean (Glycine max (L.) Merr.) under lodging conditions using RGB information. In this study, 17 time point data throughout the soybean growing season in Nanchang, Jiangxi Province, China, were collected, and the vegetation index, texture information, canopy cover, and crop height were obtained by UAV-image processing. After that, partial least squares regression (PLSR), logistic regression (Logistic), random forest regression (RFR), support vector machine regression (SVM), and deep learning neural network (DNN) were used to estimate the yield parameters. The results can be summarized as follows: (1) The most suitable time point to estimate the yield was flowering stage (48 days), which was when most of the soybean cultivars flowered. (2) The multiple data fusion improved the accuracy of estimating the yield parameters, and the texture information has a high potential to contribute to the estimation of yields, and (3) The DNN model showed the best accuracy of training (R2=0.66 rRMSE=32.62%) and validation (R2=0.50, rRMSE=43.71%) datasets. In conclusion, these results provide insights into both best estimate period selection and early yield estimation under lodging condition when using remote sensing.

19.
J Integr Plant Biol ; 64(3): 632-648, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914170

RESUMO

Innovations in genomics have enabled the development of low-cost, high-resolution, single nucleotide polymorphism (SNP) genotyping arrays that accelerate breeding progress and support basic research in crop science. Here, we developed and validated the SoySNP618K array (618,888 SNPs) for the important crop soybean. The SNPs were selected from whole-genome resequencing data containing 2,214 diverse soybean accessions; 29.34% of the SNPs mapped to genic regions representing 86.85% of the 56,044 annotated high-confidence genes. Identity-by-state analyses of 318 soybeans revealed 17 redundant accessions, highlighting the potential of the SoySNP618K array in supporting gene bank management. The patterns of population stratification and genomic regions enriched through domestication were highly consistent with previous findings based on resequencing data, suggesting that the ascertainment bias in the SoySNP618K array was largely compensated for. Genome-wide association mapping in combination with reported quantitative trait loci enabled fine-mapping of genes known to influence flowering time, E2 and GmPRR3b, and of a new candidate gene, GmVIP5. Moreover, genomic prediction of flowering and maturity time in 502 recombinant inbred lines was highly accurate (>0.65). Thus, the SoySNP618K array is a valuable genomic tool that can be used to address many questions in applied breeding, germplasm management, and basic crop research.


Assuntos
Glycine max , Polimorfismo de Nucleotídeo Único , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Glycine max/genética
20.
Mol Biol Rep ; 48(11): 7351-7360, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34676504

RESUMO

BACKGROUND: Glyphosate is a broad-spectrum, non-selective systemic herbicide. Introduction of glyphosate tolerance genes such as EPSPS or detoxification genes such as GAT can confer glyphosate tolerance on plants. Our previous study revealed that co-expression of EPSPS and GAT genes conferred higher glyphosate tolerance without "yellow flashing". However, the plant response to glyphosate at the transcriptional level was not investigated. METHODS AND RESULTS: To investigate the glyphosate tolerance mechanism, RNA-seq was conducted using four soybean genotypes, including two non-transgenic (NT) soybeans, ZH10 and MD12, and two GM soybeans, HJ698 and ZH10-6. Differentially expressed genes (DEGs) were identified in these soybeans before and after glyphosate treatment. Similar response to glyphosate in the two NT soybeans and the different effects of glyphosate on the two GM soybeans were identified. As treatment time was prolonged, the expression level of some DEGs involved in shikimate biosynthetic pathway and herbicide targeted cross-pathways was increased or declined continuously in NT soybeans, and altered slightly in HJ698. However, the expression level of some DEGs was altered in ZH10-6 at 12 hpt, while similar expression level of some DEGs involved in shikimate biosynthetic pathway and herbicide targeted cross-pathways was observed in ZH10-6 at 0 hpt and 72 hpt. These observations likely explain the higher glyphosate tolerance in ZH10-6 than in HJ698 and NT soybeans. CONCLUSIONS: These results suggested that GAT and EPSPS genes together play a crucial role in response to glyphosate, the GAT gene may work at the early stage of glyphosate exposure, whereas the EPSPS gene may be activated after the uptake of glyphosate by plants. These findings will provide valuable insight for the molecular basis underlying glyphosate tolerance or glyphosate detoxication.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Glicina/farmacologia , Plantas Geneticamente Modificadas , RNA-Seq , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/fisiologia , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...