Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
J Vasc Surg Venous Lymphat Disord ; : 101969, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305949

RESUMO

OBJECTIVE: The diagnosis of abdominal lymphatic malformations (ALMs) is often overlooked in clinical practice. However, reports in the literature about ALMs are limited to case reports/series with small sample sizes. This study aimed to review our currently available data to describe the clinical characteristics of ALMs and evaluate the risk factors for acute abdomen caused by ALMs. METHODS: We reviewed the records of patients with ALMs who were diagnosed between December 2008 and January 2023 in our institution. The associations between acute abdomen and ALMs were analyzed based on single-factor and multivariate logistic regression analyses. RESULTS: This study included 345 patients with pathologically confirmed ALMs, with a slight female predominance of 1:1.4. Approximately 39.1% (135/345) of patients were asymptomatic, and 24.6% (85/345) presented with acute abdomen. Among the ALMs in the cohort, 42.6% (147/345) were retroperitoneal lymphatic malformations (LMs). The maximal lesion dimensions in patients with acute abdomen and nonacute abdomen were 10.0 cm and 7.8 cm, respectively, with no significant difference based on multivariate analyses. Children were more likely to develop acute abdomen than adults were (P=0.002; odds ratio [OR], 5.128; 95% confidence interval [CI], 1.835-14.326). ALMs accompanying acute abdomen were more common for lesions involving the small intestinal mesentery (P=0.023; OR, 2.926; 95% CI, 1.157-7.400). CONCLUSION: ALMs are rare with insidious onset, and retroperitoneal LMs are the most common ALMs, followed by jejunal MLMs. Our retrospective analysis suggested that young age and small intestinal mesenteric lymphatic malformation are independent risk factors for acute abdomen with ALMs.

2.
Front Oncol ; 14: 1465155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119090
3.
Cell Death Dis ; 15(7): 541, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080260

RESUMO

Esophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown. Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells. Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway. HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT. Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted therapy.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Via de Pentose Fosfato , Transcetolase , Regulação para Cima , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Transcetolase/metabolismo , Transcetolase/genética , Regulação para Cima/genética
4.
Biomed Pharmacother ; 178: 117181, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059349

RESUMO

Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.


Assuntos
Hemangioma , Neovascularização Patológica , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Hemangioma/patologia , Hemangioma/tratamento farmacológico , Lactente , Propranolol/uso terapêutico , Propranolol/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Angiogênese
5.
Ecology ; 105(8): e4366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961606

RESUMO

Global forests are increasingly lost to climate change, disturbance, and human management. Evaluating forests' capacities to regenerate and colonize new habitats has to start with the seed production of individual trees and how it depends on nutrient access. Studies on the linkage between reproduction and foliar nutrients are limited to a few locations and few species, due to the large investment needed for field measurements on both variables. We synthesized tree fecundity estimates from the Masting Inference and Forecasting (MASTIF) network with foliar nutrient concentrations from hyperspectral remote sensing at the National Ecological Observatory Network (NEON) across the contiguous United States. We evaluated the relationships between seed production and foliar nutrients for 56,544 tree-years from 26 species at individual and community scales. We found a prevalent association between high foliar phosphorous (P) concentration and low individual seed production (ISP) across the continent. Within-species coefficients to nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) are related to species differences in nutrient demand, with distinct biogeographic patterns. Community seed production (CSP) decreased four orders of magnitude from the lowest to the highest foliar P. This first continental-scale study sheds light on the relationship between seed production and foliar nutrients, highlighting the potential of using combined Light Detection And Ranging (LiDAR) and hyperspectral remote sensing to evaluate forest regeneration. The fact that both ISP and CSP decline in the presence of high foliar P levels has immediate application in improving forest demographic and regeneration models by providing more realistic nutrient effects at multiple scales.


Assuntos
Florestas , Tecnologia de Sensoriamento Remoto , Estados Unidos , Árvores/fisiologia , Sementes/fisiologia , Folhas de Planta/fisiologia , Nutrientes , Reprodução/fisiologia
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 496-502, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38845496

RESUMO

OBJECTIVE: To analyze the impact of cecal ligation and puncture (CLP)-induced sepsis on the proliferation and differentiation of intestinal epithelial cells. METHODS: (1) Animal experiment: sixteen male C57BL/6 mice were divided into sham operation group (Sham group) and CLP-induced sepsis model group (CLP group) by random number table method, with 8 mice in each group. After 5 days of operation, the jejunal tissues were taken for determination of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) and intestinal alkaline phosphatase (IAP) by polymerase chain reaction (PCR). The translation of LGR5 was detected by Western blotting. The expression of proliferating cell nuclear antigen (Ki67) was analyzed by immunohistochemistry. IAP level was detected by modified calcium cobalt staining and colorimetry. Immunofluorescence staining was used to detect the expression of Paneth cell marker molecule lysozyme 1 (LYZ1) and goblet cell marker molecule mucin 2 (MUC2). (2) Cell experiment: IEC6 cells in logarithmic growth stage were divided into blank control group and lipopolysaccharide (LPS) group (LPS 5 µg/mL). Twenty-four hours after treatment, PCR and Western blotting were used to analyze the transcription and translation of LGR5. The proliferation of IEC6 cells were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining. The transcription and translation of IAP were detected by PCR and colorimetric method respectively. RESULTS: (1) Animal experiment: the immunohistochemical results showed that the positive rate of Ki67 staining in the jejunal tissue of CLP group was lower than that of Sham group [(41.7±2.5)% vs. (48.7±1.4)%, P = 0.01]. PCR and Western blotting results showed that there were no statistical differences in the mRNA and protein expressions of LGR5 in the jejunal tissue between the CLP group and Sham group (Lgr5 mRNA: 0.7±0.1 vs. 1.0±0.2, P = 0.11; LGR5/ß-actin: 0.83±0.17 vs. 0.68±0.19, P = 0.24). The mRNA (0.4±0.1 vs. 1.0±0.1, P < 0.01) and protein (U/g: 47.3±6.0 vs. 73.1±15.3, P < 0.01) levels of IAP in the jejunal tissue were lower in CLP group. Immunofluorescence saining analysis showed that the expressions of LYZ1 and MUC2 in the CLP group were lower than those in the Sham group. (2) Cell experiment: PCR and Western blotting results showed that there was no significant difference in the expression of LGR5 between the LPS group and the blank control group (Lgr5 mRNA: 0.9±0.1 vs. 1.0±0.2, P = 0.33; LGR5/ß-actin: 0.71±0.18 vs. 0.69±0.04, P = 0.81). The proliferation rate of IEC6 cells in the LPS group was lower than that in the blank control group, but there was no significant difference [positivity rate of EdU: (40.5±3.8)% vs. (46.5±3.6)%, P = 0.11]. The mRNA (0.5±0.1 vs. 1.0±0.2, P < 0.01) and protein (U/g: 15.0±4.0 vs. 41.2±10.4, P < 0.01) of IAP in the LPS group were lower than those in the blank control group. CONCLUSIONS: CLP-induced sepsis inhibits the proliferation and differentiation of intestinal epithelial cells, impairing the self-renewal ability of intestinal epithelium.


Assuntos
Diferenciação Celular , Proliferação de Células , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Sepse , Células-Tronco , Animais , Masculino , Sepse/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Ceco , Mucosa Intestinal/metabolismo , Ligadura , Mucina-2
7.
Heliyon ; 10(9): e29605, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707478

RESUMO

Objective: The predictive value of serum tumor markers (STMs) in assessing epidermal growth factor receptor (EGFR) mutations among patients with non-small cell lung cancer (NSCLC), particularly those with non-stage IA, remains poorly understood. The objective of this study is to construct a predictive model comprising STMs and additional clinical characteristics, aiming to achieve precise prediction of EGFR mutations through noninvasive means. Materials and methods: We retrospectively collected 6711 NSCLC patients who underwent EGFR gene testing. Ultimately, 3221 stage IA patients and 1442 non-stage IA patients were analyzed to evaluate the potential predictive value of several clinical characteristics and STMs for EGFR mutations. Results: EGFR mutations were detected in 3866 patients (57.9 %) of all NSCLC patients. None of the STMs emerged as significant predictor for predicting EGFR mutations in stage IA patients. Patients with non-stage IA were divided into the study group (n = 1043) and validation group (n = 399). In the study group, univariate analysis revealed significant associations between EGFR mutations and the STMs (carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), and cytokeratin-19 fragment (CYFRA21-1)). The nomogram incorporating CEA, CYFRA 21-1, pathology, gender, and smoking history for predicting EGFR mutations with non-stage IA was constructed using the results of multivariate analysis. The area under the curve (AUC = 0.780) and decision curve analysis demonstrated favorable predictive performance and clinical utility of nomogram. Additionally, the Random Forest model also demonstrated the highest average C-index of 0.793 among the eight machine learning algorithms, showcasing superior predictive efficiency. Conclusion: CYFRA21-1 and CEA have been identified as crucial factors for predicting EGFR mutations in non-stage IA NSCLC patients. The nomogram and 8 machine learning models that combined STMs with other clinical factors could effectively predict the probability of EGFR mutations.

8.
Food Res Int ; 187: 114359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763643

RESUMO

Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and ß-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Olfatometria , Microextração em Fase Sólida , Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Humanos , Camellia sinensis/química , Extração em Fase Sólida/métodos
9.
Acta Biomater ; 182: 28-41, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761961

RESUMO

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Assuntos
Preparações de Ação Retardada , Regeneração Nervosa , Óxido Nítrico , Animais , Óxido Nítrico/metabolismo , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Ratos Sprague-Dawley , Ratos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Masculino , Hidrogéis/química , Nervo Isquiático/efeitos dos fármacos
10.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Proteína 1A de Ligação a Tacrolimo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Camundongos Nus , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Serina-Treonina Quinases TOR/metabolismo
11.
J Phys Condens Matter ; 36(31)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38657623

RESUMO

In the context of carbon neutrality and carbon peaking, molecular management has become a focus of the petrochemical industry. The key to achieving molecular management is molecular reconstruction, which relies on rapid and accurate calculation of oil properties. Focusing on naphtha, we proposed a novel property prediction model construction procedure (MDs-NP) employing molecular dynamics simulations for property collections and gamma distribution from real analytical data for calculating mole fractions of simulation mixtures. We calculated 348 sets of mixture properties data in the range of 273 K-300 K by molecular dynamics simulations. Molecular feature extraction was based on molecular descriptors. In addition to descriptors based on open-source toolkits (RDKit and Mordred), we designed 12 naphtha knowledge (NK) descriptors with a focus on naphtha. Three machine learning algorithms (support vector regression, extreme gradient boosting and artificial neural network) were applied and compared to establish models for the prediction of the density and viscosity of naphtha. Mordred and NK descriptors + support vector regression algorithm achieved the best performance for density. The selected RDKFp and NK descriptors + artificial neural network algorithm achieved the best performance for viscosity. Using ablation studies, T, P_w and CC(C)C are three effective descriptors in NK that can improve the performance of the property prediction models. MDs-NP has the potential to be extended to more properties as well as more-complex petroleum systems. The models from MDs-NP can be used for rapid molecular reconstruction to facilitate construction of data-driven models and intelligent transformation of petrochemical processes.

12.
Nat Commun ; 15(1): 2031, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448415

RESUMO

Multimode fibers (MMFs) are gaining renewed interest for nonlinear effects due to their high-dimensional spatiotemporal nonlinear dynamics and scalability for high power. High-brightness MMF sources with effective control of the nonlinear processes would offer possibilities in many areas from high-power fiber lasers, to bioimaging and chemical sensing, and to intriguing physics phenomena. Here we present a simple yet effective way of controlling nonlinear effects at high peak power levels. This is achieved by leveraging not only the spatial but also the temporal degrees of freedom during multimodal nonlinear pulse propagation in step-index MMFs, using a programmable fiber shaper that introduces time-dependent disorders. We achieve high tunability in MMF output fields, resulting in a broadband high-peak-power source. Its potential as a nonlinear imaging source is further demonstrated through widely tunable two-photon and three-photon microscopy. These demonstrations provide possibilities for technology advances in nonlinear optics, bioimaging, spectroscopy, optical computing, and material processing.

13.
Cell Death Dis ; 15(2): 158, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383528

RESUMO

Chemotherapy is a primary treatment for esophageal squamous cell carcinoma (ESCC). Resistance to chemotherapeutic drugs is an important hurdle to effective treatment. Understanding the mechanisms underlying chemotherapy resistance in ESCC is an unmet medical need to improve the survival of ESCC. Herein, we demonstrate that ferroptosis triggered by inhibiting high mobility group AT-hook 1 (HMGA1) may provide a novel opportunity to gain an effective therapeutic strategy against chemoresistance in ESCC. HMGA1 is upregulated in ESCC and works as a key driver for cisplatin (DDP) resistance in ESCC by repressing ferroptosis. Inhibition of HMGA1 enhances the sensitivity of ESCC to ferroptosis. With a transcriptome analysis and following-up assays, we demonstrated that HMGA1 upregulates the expression of solute carrier family 7 member 11 (SLC7A11), a key transporter maintaining intracellular glutathione homeostasis and inhibiting the accumulation of malondialdehyde (MDA), thereby suppressing cell ferroptosis. HMGA1 acts as a chromatin remodeling factor promoting the binding of activating transcription factor 4 (ATF4) to the promoter of SLC7A11, and hence enhancing the transcription of SLC7A11 and maintaining the redox balance. We characterized that the enhanced chemosensitivity of ESCC is primarily attributed to the increased susceptibility of ferroptosis resulting from the depletion of HMGA1. Moreover, we utilized syngeneic allograft tumor models and genetically engineered mice of HMGA1 to induce ESCC and validated that depletion of HMGA1 promotes ferroptosis and restores the sensitivity of ESCC to DDP, and hence enhances the therapeutic efficacy. Our finding uncovers a critical role of HMGA1 in the repression of ferroptosis and thus in the establishment of DDP resistance in ESCC, highlighting HMGA1-based rewiring strategies as potential approaches to overcome ESCC chemotherapy resistance. Schematic depicting that HMGA1 maintains intracellular redox homeostasis against ferroptosis by assisting ATF4 to activate SLC7A11 transcription, resulting in ESCC resistance to chemotherapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína HMGA1a/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Proteína HMGA1b , Linhagem Celular Tumoral
14.
J Pediatr Surg ; 59(4): 621-626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38182536

RESUMO

INTRODUCTION: There are limited studies revealing the association between serum albumin concentrations and acute kidney injury (AKI) in critically ill children. METHODS: This was a multicenter retrospective study. Children consecutively admitted to four pediatric surgical intensive care units (PSICUs) between January 2016 and December 2020 were screened for analysis. Patients without recorded albumin values during the PSICU stay were excluded. Data were extracted from the electronic medical records systems of the hospitals. AKI was defined according to the Kidney Disease Improving Global Outcome (KDIGO) guidelines. The associations between serum albumin levels and AKI were assessed by using logistic regression models. RESULTS: A total of 7802 children were included in the analysis. The median age of the children was 1.0 (interquartile range (IQR), 0.0-4.0) years. There were 3214 (41.2 %) children who developed AKI. In the univariate logistic regression model, serum albumin levels were associated with AKI (odds ratio (OR) = 1.04, 95 % confidence interval (CI) 1.04-1.05). After adjusting for covariates, serum albumin showed an independent association with AKI (OR = 1.04, 95 % CI 1.03-1.05). Albumin levels above 39.43 g/L (OR = 1.036, 95 % CI 1.002-1.070) were associated with AKI in the unadjusted cubic spline. In the adjusted cubic spline, albumin levels above 40.41 g/L (OR = 1.061, 95 % CI 1.003-1.122) were associated with AKI. CONCLUSION: High serum albumin was associated with AKI in critically ill children in the PSICU. Further studies are needed to validate our findings. TYPE OF STUDY: Prognostic Study. LEVEL OF EVIDENCE: LEVEL II.


Assuntos
Injúria Renal Aguda , Estado Terminal , Criança , Humanos , Estudos Retrospectivos , Fatores de Risco , Unidades de Terapia Intensiva Pediátrica , Albumina Sérica , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Cuidados Críticos , Unidades de Terapia Intensiva
16.
Environ Sci Pollut Res Int ; 31(2): 2930-2943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38079038

RESUMO

Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.


Assuntos
Microcystis , Microcystis/genética , Lagos/microbiologia , Microcistinas , Reação em Cadeia da Polimerase em Tempo Real , Água
17.
J Pediatr Surg ; 59(4): 599-604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158257

RESUMO

BACKGROUND: Kaposiform hemangioendothelioma (KHE) is a rare, locally aggressive vascular tumor that often occurs in infants and young children. The goal of this study was to analyze the clinical characteristics of KHE patients with bone destruction and provide clinical guidance for diagnosis and treatment. METHODS: We conducted a descriptive cohort study with follow-up from January 2007 to January 2023 to collect demographic information and tumor-related clinical information from KHE patients with bone destruction. RESULTS: A total of 269 KHE patients were included in the study, of whom 70 (26.0%) patients had tumors with bone destruction. The median age at diagnosis of patients with bone destruction was 19.0 months, which was much later than that of patients without bone destruction (P < 0.001). Patients with bone destruction were more likely to have a decreased range of motion (ROM) (P < 0.001). Metaphysis involvement was more likely to occur in the lower limb bones (P = 0.039), and the lower limb bones were more likely to be associated with decreased ROM (P = 0.001). Tumors involving extracompartmental bone were more likely to have decreased ROM (P = 0.003) and exhibit the Kasabach-Merritt phenomenon (P = 0.006). CONCLUSIONS: Based on the rarity and significant heterogeneity of KHE patients with bone destruction, we should give full play to the role of multidisciplinary teams in addressing disease to reduce the long-term complications of KHE with bone destruction and improve the quality of life of patients. TYPE OF STUDY: Prognostic Study. LEVEL OF EVIDENCE: Level II.


Assuntos
Hemangioendotelioma , Síndrome de Kasabach-Merritt , Sarcoma de Kaposi , Lactente , Criança , Humanos , Pré-Escolar , Síndrome de Kasabach-Merritt/terapia , Síndrome de Kasabach-Merritt/tratamento farmacológico , Seguimentos , Estudos de Coortes , Qualidade de Vida , Estudos Retrospectivos , Hemangioendotelioma/diagnóstico , Hemangioendotelioma/terapia , Hemangioendotelioma/complicações , Sarcoma de Kaposi/diagnóstico , Sarcoma de Kaposi/terapia , Sarcoma de Kaposi/complicações , Prognóstico
18.
Anal Bioanal Chem ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085339

RESUMO

Laccase is an enzyme known for its eco-friendly uses in environmental cleanup and biotechnology. However, it has limitations such as low stability, high cost, and complex recycling. So, there is a need for laccase mimics that can effectively imitate its properties. Herein, we created copper formate-lysine nanoparticles (Cuf-Lys) that mimic laccase's activity. The developed Cuf-Lys demonstrated remarkable polyphenol oxidase-like activity, stability, and recyclability, making them suitable for the fabrication of efficient colorimetric sensors for the detection of epinephrine. These sensors had a specific response and could accurately measure epinephrine concentrations ranging from 2.5 to 50 µM, with a detection limit as low as 1 µM. Furthermore, the biosensor demonstrated high sensitivity and selectivity when applied to the detection of rutin. The limit of detection for rutin was determined to be 0.16 µM while in the linear concentration range of 0.25 to 150.0 µM. We believe that Cuf-Lys provide a new route for the design of laccase mimics, showing potential applications for biomedical diagnosis and environmental monitoring.

19.
Gut Microbes ; 15(2): 2293312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087436

RESUMO

Intestinal dysbiosis frequently occurs in abdominal radiotherapy and contributes to irradiation (IR)-induced intestinal damage and inflammation. Akkermansia muciniphila (A. muciniphila) is a recently characterized probiotic, which is critical for maintaining the dynamics of the intestinal mucus layer and preserving intestinal microbiota homeostasis. However, the role of A. muciniphila in the alleviation of radiation enteritis remains unknown. In this study, we reported that the abundance of A. muciniphila was markedly reduced in the intestines of mice exposed to abdominal IR and in the feces of patients who received abdominal radiotherapy. Abundance of A. muciniphila in feces of radiotherapy patients was negatively correlated with the duration of diarrhea in patients. Administration of A. muciniphila substantially mitigated IR-induced intestinal damage and prevented mouse death. Analyzing the metabolic products of A. muciniphila revealed that propionic acid, a short-chain fatty acid secreted by the microbe, mediated the radioprotective effect. We further demonstrated that propionic acid bound to G-protein coupled receptor 43 (GRP43) on the surface of intestinal epithelia and increased histone acetylation and hence enhanced the expression of tight junction proteins occludin and ZO-1 and elevated the level of mucins, leading to enhanced integrity of intestinal epithelial barrier and reduced radiation-induced intestinal damage. Metformin, a first-line agent for the treatment of type II diabetes, promoted intestinal epithelial barrier integrity and reduced radiation intestinal damage through increasing the abundance of A. muciniphila. Together, our results demonstrated that A. muciniphila plays a critical role in the reduction of abdominal IR-induced intestinal damage. Application of probiotics or their regulators, such as metformin, could be an effective treatment for the protection of radiation exposure-damaged intestine.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Camundongos , Animais , Intestinos , Verrucomicrobia/metabolismo
20.
J Transl Med ; 21(1): 885, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057859

RESUMO

BACKGROUND: With the development of cancer precision medicine, a huge amount of high-dimensional cancer information has rapidly accumulated regarding gene alterations, diseases, therapeutic interventions and various annotations. The information is highly fragmented across multiple different sources, making it highly challenging to effectively utilize and exchange the information. Therefore, it is essential to create a resource platform containing well-aggregated, carefully mined, and easily accessible data for effective knowledge sharing. METHODS: In this study, we have developed "Consensus Cancer Core" (Tri©DB), a new integrative cancer precision medicine knowledgebase and reporting system by mining and harmonizing multifaceted cancer data sources, and presenting them in a centralized platform with enhanced functionalities for accessibility, annotation and analysis. RESULTS: The knowledgebase provides the currently most comprehensive information on cancer precision medicine covering more than 40 annotation entities, many of which are novel and have never been explored previously. Tri©DB offers several unique features: (i) harmonizing the cancer-related information from more than 30 data sources into one integrative platform for easy access; (ii) utilizing a variety of data analysis and graphical tools for enhanced user interaction with the high-dimensional data; (iii) containing a newly developed reporting system for automated annotation and therapy matching for external patient genomic data. Benchmark test indicated that Tri©DB is able to annotate 46% more treatments than two officially recognized resources, oncoKB and MCG. Tri©DB was further shown to have achieved 94.9% concordance with administered treatments in a real clinical trial. CONCLUSIONS: The novel features and rich functionalities of the new platform will facilitate full access to cancer precision medicine data in one single platform and accommodate the needs of a broad range of researchers not only in translational medicine, but also in basic biomedical research. We believe that it will help to promote knowledge sharing in cancer precision medicine. Tri©DB is freely available at www.biomeddb.org , and is hosted on a cutting-edge technology architecture supporting all major browsers and mobile handsets.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Genômica/métodos , Neoplasias/genética , Neoplasias/terapia , Bases de Conhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA