Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822712

RESUMO

The rapid proliferation of power sources equipped with lithium-ion batteries poses significant challenges in terms of post-scrap recycling and environmental impacts, necessitating urgent attention to the development of sustainable solutions. The cathode direct regeneration technologies present an optimal solution for the disposal of degraded cathodes, aiming to non-destructively re-lithiate and straightforwardly reuse degraded cathode materials with reasonable profits and excellent efficiency. Herein, a potential-regulated strategy is proposed for the direct recycling of degraded LiFePO4 cathodes, utilizing low-cost Na2SO3 as a reductant with lower redox potential in the alkaline systems. The aqueous re-lithiation approach, as a viable alternative, not only enables the re-lithiation of degraded cathode while ignoring variation in Li loss among different feedstocks but also utilizes the rapid sintering process to restore the cathode microstructure with desirable stoichiometry and crystallinity. The regenerated LiFePO4 exhibits enhanced electrochemical performance with a capacity of 144 mA h g-1 at 1 C and a high retention of 98% after 500 cycles at 5 C. Furthermore, this present work offers considerable prospects for the industrial implementation of directly recycled materials from lithium-ion batteries, resulting in improved economic benefits compared to conventional leaching methods.

2.
ACS Appl Mater Interfaces ; 16(5): 6033-6047, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284523

RESUMO

Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal-organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g-1 at 0.1 A g-1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g-1, a reversible discharge specific capacity of 549.9 mA h g-1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid-electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.

3.
ACS Appl Mater Interfaces ; 15(21): 25536-25549, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37200497

RESUMO

Lithium-ion batteries (LIBs) have been widely used for portable electronics and electric vehicles; however, the low capacity in the graphite anode limits the improvement of energy density. Transition-metal selenides are promising anode material candidates due to their high theoretical capacity and controllable structure. In this study, we successfully synthesize a bimetallic transition-metal selenide nanocube composite, which is well embedded in a nitrogen-doped carbon matrix (denoted as CoNiSe2/NC). This material shows a high capacity and excellent cycling for Li-ion storage. Specifically, the reversible capacity approaches ∼1245 mA h g-1 at 0.1 A g-1. When cycled at 1 A g-1, the capacity still remains at 642.9 mA h g-1 even after 1000 cycles. In-operando XRD tests have been carried out to investigate the lithium storage mechanism. We discover that the outstanding performance is due to the unique CoNiSe2/NC nanocomposite characteristics, such as the synergistic effect of bimetallic selenide on lithium storage, the small particle size, and the stable and conductive carbon structure. Therefore, this morphology structure not only reduces the volume change of metal selenides but also produces more lithium storage active sites and shortens lithium diffusion paths, which results in high capacity, good rate, and long cycling.

4.
Phys Chem Chem Phys ; 25(16): 11530-11544, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039422

RESUMO

Compared with monometallic selenides, bimetallic selenides have better synergistic effects and more abundant active sites for electrochemical reactions. As an important member of the transition metal oxide family, NiCoSe2 has been widely used in energy storage devices and has shown excellent electrochemical performance. So in this paper, nitrogen-doped carbon decorated NiCoSe2 composites (NiCoSe2/NC-700, NiCoSe2/NC-800, and NiCoSe2/NC-900) with a microflower structure were synthesized by calcining nickel-cobalt bimetallic organic skeleton materials at different temperatures, and were used as anode materials for rechargeable lithium-ion batteries. Because the MOF precursor has many advantages such as structural controllability, and a bimetal synergistic effect, the test results showed that the prepared NiCoSe2/NC composites have a special morphology, outstanding electrical conductivity, excellent lithium storage performance and electrochemical cycling performance in the process of being used as anode materials for lithium-ion batteries. The NiCoSe2/NC-800 materials displayed a high initial capacity (2099.8/1084.3 mA h g-1), and still maintained a high capacity (1041.2/989.9 mA h g-1) after 100 cycles at a current density of 0.1 A g-1 and in the voltage range of 0.01-3.0 V. In addition, at high current densities of 0.5 A g-1 and 1.0 A g-1, the increased capacity of NiCoSe2/NC composites may be due to the activation of electrodes and the pseudocapacitance during cycling. Through ex situ XRD experiments, the lithium storage mechanism of the NiCoSe2/NC-800 electrode material during cycling was further studied, and NiCoSe2/NC-800 was continuously converted into Ni, Co, and Li2Se during cycling.

5.
Waste Manag ; 136: 1-10, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34627101

RESUMO

The resource exhaustion and environmental assessment driven by sustainable development make recycle of spent LIBs urgent to be achieved. However, the conventional recycling processes are quite complicated in terms of the tedious steps and secondary contamination. In this paper, hydrosoluble naphthalenedisulfonic acid is firstly proposed to selectively extract valuable metals (Co and Li) for the regeneration of battery materials. Lithium is selectively recovered as lithium enriched solution with a high yield of 99%, while 96.6% cobalt remains in a complex-precipitate benefited from the high acidity and coordination role of naphthalenedisulfonic acid. The leaching of Li fits well with the logarithmic rate law model with an activation energy of 32.42 kJ/mol. Additionally, the regenerated lithium-ion battery active materials (Co3O4 anode and LiCoO2 cathode) prepared from the cobalt complex-precipitate and lithium-enriched solution exhibit excellent discharged-charged performances and rate capability. This feasible strategy assisted by multifunctional naphthalenedisulfonic acid may offer an alternative option for the simultaneous recovery of Li and Co and the rational resource utilization of spent lithium-ion batteries.


Assuntos
Fontes de Energia Elétrica , Lítio , Cobalto , Eletrodos , Reciclagem
6.
J Hazard Mater ; 416: 126114, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492910

RESUMO

The explosively growing demand for electrical energy is generating a great deal of spent lithium-ion batteries (LIBs). Therefore, a simple and effective strategy for the sustainable recycling of used batteries is urgently needed to minimize chemical consumption and to reduce the associated environmental pollution. In this work, 2-naphthalenesulfonic acid is innovatively proposed for the highly-selective recovery of valuable metals. Impressively, lithium and cobalt are simultaneously separated through a single-step process, in which 99.3% of lithium is leached out as Li+ enriched solutions while 99% of cobalt is precipitated as cobalt-naphthalenesulfonate. The obtained lithium enriched solutions are recovered as Li2CO3. The cobalt-naphthalenesulfonate with high purity (99%) is ready to be transformed into Co3O4, and then generated into LiCoO2 by reacting with the above-obtained Li2CO3. The cathode material LiCoO2 with micro/nanostructures exhibits excellent electrochemical properties. Characterization results confirm the coordination structure of the extracted cobalt complex (Co(NS)2•6H2O). Finally, compared to other selective metal extraction techniques, this strategy avoids additional separation and purification processes, thus improving the recycling efficiency. Overall, this route can be extended to selectively extract valuable metals from other types of cathode materials in spent LIBs as a sustainable approach.

7.
Small ; 16(48): e2004022, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33155416

RESUMO

Alkali metal (Li, Na, K) ion batteries with high energy density are urgently required for large-scale energy storage applications while the lack of advanced anode materials restricts their development. Recently, Bi-based materials have been recognized as promising electrode candidates for alkali metal-ion batteries due to their high volumetric capacity and suitable operating potential. Herein, the latest progress of Bi-based electrode materials for alkali metal-ion batteries is summarized, mainly focusing on synthesis strategies, structural features, storage mechanisms, and the corresponding electrochemical performance. Particularly, the optimization of electrode-electrolyte interphase is also discussed. In addition, the remaining challenges and further perspectives of Bi-based electrode materials are outlined. This review aims to provide comprehensive knowledge of Bi-based materials and offer a guideline toward more applications in high-performance batteries.

8.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911666

RESUMO

In adaptive optics (AO), multiple different incident wavefronts correspond to a same far-field intensity distribution, which leads to a many-to-one mapping. To solve this problem, a single far-field deep learning adaptive optics system based on four-quadrant discrete phase modulation (FQDPM) is proposed. Our method performs FQDPM on an incident wavefront to overcome this many-to-one mapping, then convolutional neural network (CNN) is used to directly predict the wavefront. Numerical simulations indicate that the proposed method can achieve precise high-speed wavefront correction with a single far-field intensity distribution: it takes nearly 0.6ms to complete wavefront correction while the mean root mean square (RMS) of residual wavefronts is 6.3% of that of incident wavefronts, and the Strehl ratio of the far-field intensity distribution increases by 5.7 times after correction. In addition, the experiment results show that mean RMS of residual wavefronts is 6.5% of that of incident wavefronts and it takes nearly 0.5 ms to finish wavefront reconstruction, which verifies the correctness of our proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...