Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14696, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926471

RESUMO

Soil microorganisms play pivotal roles in driving essential biogeochemical processes in terrestrial ecosystems, and they are sensitive to heavy metal pollution. However, our understanding of multiple environmental factors interaction in heavy metal polluted paddy fields to shape microbial community assembly remain limited. In the current study, we used 16S rRNA amplicon sequencing to characterize the microbial community composition in paddy soils collected from a typical industry town in Taihu region, eastern China. The results revealed that Cd and Pb were the major pollutant, and Proteobacteria, Acidobacteria and Chloroflexi were the dominate indigenous bacterial phyla. Linear regression and random forest analysis demonstrated that soil pH was the most important predictor of bacterial diversity. Mantel analysis showed that bacterial community structure was mainly driven by pH, CEC, silt, sand, AK, total Cd and DTPA-Cd. The constructed bacterial co-occurrence network, utilizing a random matrix theory-based approach, exhibited non-random with scale-free and modularity features. The major modules within the networks also showed significant correlations with soil pH. Overall, our study indicated that soil physiochemical properties made predominant contribution to bacterial community diversity, structure and their association in Cd/Pb polluted paddy fields. These findings expand our knowledge of the key environmental drivers and co-occurrence patterns of bacterial community in polluted paddy fields.


Assuntos
Bactérias , Metais Pesados , RNA Ribossômico 16S , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S/genética , Solo/química , China , Microbiota , Oryza/microbiologia , Cádmio , Concentração de Íons de Hidrogênio , Biodiversidade
2.
Brain Sci ; 14(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38790427

RESUMO

Phase synchronization serves as an effective method for analyzing the synchronization of electroencephalogram (EEG) signals among brain regions and the dynamic changes of the brain. The purpose of this paper is to study the construction of the functional brain network (FBN) based on phase synchronization, with a special focus on neural processes related to human balance regulation. This paper designed four balance paradigms of different difficulty by blocking vision or proprioception and collected 19-channel EEG signals. Firstly, the EEG sequences are segmented by sliding windows. The phase-locking value (PLV) of core node pairs serves as the phase-screening index to extract the valid data segments, which are recombined into new EEG sequences. Subsequently, the multichannel weighted phase lag index (wPLI) is calculated based on the new EEG sequences to construct the FBN. The experimental results show that due to the randomness of the time points of body balance adjustment, the degree of phase synchronization of the datasets screened by PLV is more obvious, improving the effective information expression of the subsequent EEG data segments. The FBN topological structures of the wPLI show that the connectivity of various brain regions changes structurally as the difficulty of human balance tasks increases. The frontal lobe area is the core brain region for information integration. When vision or proprioception is obstructed, the EEG synchronization level of the corresponding occipital lobe area or central area decreases. The synchronization level of the frontal lobe area increases, which strengthens the synergistic effect among the brain regions and compensates for the imbalanced response caused by the lack of sensory information. These results show the brain regional characteristics of the process of human balance regulation under different balance paradigms, providing new insights into endogenous neural mechanisms of standing balance and methods of constructing brain networks.

3.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577924

RESUMO

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Animais , Camundongos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ciclo Celular
4.
Sci Total Environ ; 905: 166902, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709069

RESUMO

After deposition on the topsoil, microplastics (MPs) may be vertically migrated to deeper soil layers over time or eventually enter the groundwater system, leading to more widespread environmental and ecological issues. However, the vertical distribution of MPs in natural soils are not yet fully understood. In this study, we collected soil profiles (0-100 cm) from four different land use types on the west bank of Taihu Lake in China to investigate the vertical distribution and weathering characteristics of MPs. The average abundance of soil MPs followed the pattern of paddy field (490 ± 82 items/kg) > dryland (356 ± 55 items/kg) > tea garden (306 ± 32 items/kg) > woodland (171 ± 27 items/kg) in the 0-10 cm layer, and the abundance of MPs decreased linearly with soil depth (r = -0.89, p < 0.01). Compared to tea garden and woodland, MPs in dryland and paddy field have migrated to deeper soil layers (80-100 cm). The carbonyl index of polyethylene and polypropylene MPs increased significantly with soil depth (r = 0.96, p < 0.01), with values of 0.58 ± 0.30 and 0.54 ± 0.33, respectively. The significant negative correlation between MPs size and carbonyl index confirmed that small-sized MPs in deeper soil layers originated from the weathering and fragmentation of MPs in topsoil. The results of structural equation model showed that roots and soil aggregates may act as filters during the vertical migration of MPs. These findings contribute to a better understanding of the environmental fate of MPs in soil and the assessment of associated ecological risks.

5.
IEEE Trans Cybern ; 53(7): 4704-4717, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216255

RESUMO

This article explores the model-free remote control problem in a wireless networked cyber-physical system (CPS) composed of spatially distributed sensors, controllers, and actuators. The sensors sample the states of the controlled system to generate control instructions at the remote controller, while the actuators maintain the system's stability by executing control commands. To realize the control under a model-free system, the deep deterministic policy gradient (DDPG) algorithm is adopted in the controller to enable model-free control. Unlike the traditional DDPG algorithm, which only takes the system state as input, this article incorporates historical action information as input to extract more information and achieve precise control in the case of communication latency. Additionally, in the experience replay mechanism of the DDPG algorithm, we incorporate the reward into the prioritized experience replay (PER) approach. According to the simulation results, the proposed sampling policy improves the convergence rate by determining the sampling probability of transitions based on the joint consideration of temporal difference (TD) error and reward.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Simulação por Computador , Modelos Biológicos , Exame Físico
6.
Chemosphere ; 330: 138558, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059205

RESUMO

Rice production is crucial for human nutrition and food safety globally. However, it has been a significant sink for potentially harmful metals because of intensive anthropogenic activities. The study was conducted to characterize heavy metal translocation from soil to rice at the filling, doughing and maturing stages, and influencing factors of their accumulation in rice. The distribution and accumulation patterns varied for metal species and growth stages. Cd and Pb accumulation mainly occurred in roots, Cu and Zn were readily transported to stems. Cd, Cu, and Zn accumulation in grains had a descending order of filling > doughing > maturing. Soil heavy metals, TN, EC, and pH exerted important impacts on heavy metals uptake by roots during the period from filling stage to maturing stage. Concentrations of heavy metals in grains were positively correlated with the translocation factors TFstem-grain (from stem to grain) and TFleaf-grain (from leaf to grain). Grain Cd exhibited significant correlations with total Cd and DTPA-Cd in the soil at each of the three growth stages. Moreover, Cd in maturing grain could be effectively predicted by soil pH and DTPA-Cd at the filling stage.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Humanos , Solo/química , Oryza/química , Cádmio/análise , Poluentes do Solo/análise , Metais Pesados/análise , Grão Comestível/química , China , Ácido Pentético/análise , Monitoramento Ambiental
7.
Environ Pollut ; 327: 121631, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058862

RESUMO

Microplastic pollution is widespread in terrestrial and aquatic environments; however, a systematic assessment of the ecological risks of microplastics is lacking. This study collected research studies on microplastics in soil, aquatic and sediment environments, and screened 128 articles including 3459 sites to assess the ecological risks posed by microplastics in China following a literature quality assessment. We developed a systematic ecological risk assessment framework for microplastics in terms of spatial characterization, biotoxicity and anthropogenic impacts. The results of the pollution load index indicated that 74% and 47% of the soil and aquatic environments studied, respectively, faced a medium or higher level of pollution. Comparing predicted no effect concentrations (PNEC) and measured environmental concentrations (MECs), revealed that soil (97.70%) and aquatic (50.77%) environmental studies were at serious ecological risk from microplastics. The results of the pressure-state-response model showed that the microplastic pollution in Pearl River Delta was in a high-risk state. In addition, we found that ultraviolet radiation and rainfall exacerbate soil microplastic pollution, and higher river runoff may carry large amounts of microplastic from the source. The framework developed in this study will help assess the ecological risks of microplastics in the region to promote the mitigation of plastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Raios Ultravioleta , Monitoramento Ambiental/métodos , Ecossistema , China , Medição de Risco , Solo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Chemosphere ; 324: 138292, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870618

RESUMO

Soil contamination by microplastics (MPs) has gained widespread attention, whose fate may be influenced by land use types. The effects of land use types and the intensity of human activities on the distribution and sources of soil MPs at the watershed scale are unclear. In this study, 62 surface soil sites in representing five land use types (urban, tea garden, dryland, paddy field and woodland) and 8 freshwater sediment sites were investigated in the Lihe River watershed. MPs were detected in all samples, and the average abundance of soil and sediments was 401.85 ± 214.02 and 222.13 ± 54.66 items/kg, respectively. The soil MPs abundance followed the sequence: urban > paddy field > dryland > tea garden > woodland. Soil MP distribution and MP communities were significant different (p < 0.05) among land use types. The similarity of MP community highly correlated with geographic distance, and woodlands and freshwater sediments may be a potential fate for MPs in the Lihe River watershed. Soil clay, pH, and bulk density significantly correlated with MP abundance and fragment shape (p < 0.05). The positive correlation between population density, Total- Point of Interest (POI) and MP diversity indicates the importance of intensity of human activities in exacerbating soil MP pollution (p < 0.001). Plastic waste sources accounted for 65.12%, 58.60%, 48.15% and 25.35% of MPs in urban, tea garden, dryland and paddy field soils, respectively. Differences in the intensity of agricultural activities and cropping patterns were associated with different percentages of mulching film sources in the three types of agricultural soils. This study provides new ideas for the quantitative analysis of soil MP sources in different land use types.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos , Solo , Rios , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Chá
9.
Sci Total Environ ; 877: 162891, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940748

RESUMO

Soil microplastic (MP) pollution has recently become increasingly aggravated, with severe consequences being generated. Understanding the spatial distribution characteristics of soil MPs is an important prerequisite for protecting and controlling soil pollution. However, determining the spatial distribution of soil MPs through a large number of soil field sampling and laboratory test analyses is unrealistic. In this study, we compared the accuracy and applicability of different machine learning models for predicting the spatial distribution of soil MPs. The support vector machine regression model with radial basis function (RBF) as kernel function (SVR-RBF) has a high prediction accuracy (R2 = 0.8934). Among the six ensemble models, random forest (R2 = 0.9007) could better explain the significance of source and sink factors affecting the occurrence of soil MPs. Soil texture, population density, and MPs point of interest (MPs-POI) were the main source-sink factors affecting the occurrence of soil MPs. Furthermore, the accumulation of MPs in soil was significantly affected by human activity. The spatial distribution map of soil MP pollution in the study area was drawn based on the bivariate local Moran's I model of soil MP pollution and the normalized difference vegetation index (NDVI) variation trend. A total of 48.74 km2 of soil was in an area of serious MP pollution, mainly concentrated in urban soil. This study provides a hybrid framework that includes spatial distribution prediction of MPs, source-sink analysis, and pollution risk area identification, providing scientific and systematic methods and techniques for pollution management in other soil environments.

10.
EMBO J ; 42(4): e111549, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36598329

RESUMO

YAP/TAZ transcriptional co-activators play pivotal roles in tumorigenesis. In the Hippo pathway, diverse signals activate the MST-LATS kinase cascade that leads to YAP/TAZ phosphorylation, and subsequent ubiquitination and proteasomal degradation by SCFß-TrCP . When the MST-LATS kinase cascade is inactive, unphosphorylated or dephosphorylated YAP/TAZ translocate into the nucleus to mediate TEAD-dependent gene transcription. Hippo signaling-independent YAP/TAZ activation in human malignancies has also been observed, yet the mechanism remains largely elusive. Here, we report that the ubiquitin E3 ligase HERC3 can promote YAP/TAZ activation independently of its enzymatic activity. HERC3 directly binds to ß-TrCP, blocks its interaction with YAP/TAZ, and thus prevents YAP/TAZ ubiquitination and degradation. Expression levels of HERC3 correlate with YAP/TAZ protein levels and expression of YAP/TAZ target genes in breast tumor cells and tissues. Accordingly, knockdown of HERC3 expression ameliorates tumorigenesis of breast cancer cells. Our results establish HERC3 as a critical regulator of the YAP/TAZ stability and a potential therapeutic target for breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Humanos , Feminino , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/genética , Transativadores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Sinalização YAP , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Ubiquitinação , Neoplasias da Mama/genética , Ubiquitinas/metabolismo , Ligases/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
11.
Environ Pollut ; 313: 120183, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126769

RESUMO

The soil environment serves as an assembling area for microplastics, and is an important secondary source of microplastics in other environmental media. Recently, soil microplastics have been extensively studied; however, high variability is observed among the research results owing to different soil properties, and the complexity of soil microplastic composition. The present study amassed the findings of 2886 experimental groups, across 38 studies from 2016 to 2022, and used meta-analysis to quantitatively analyze the differences in the effects of microplastic exposure on soil physicochemical properties and biota. The results showed that among the existing soil microplastic research, agricultural soils maintained a higher environmental exposure distribution than other environments. Microplastic fibers and fragments were the predominant shapes, indicating that the extensive use of agricultural films are the primary influencing factor of soil microplastic pollution at present. The results of the meta-analysis found that microplastic exposure had a significant negative effect on soil bulk density (lnRR = -0.04) and aggregate stability (lnRR = -0.085), indicating that microplastics may damage the integrity of soil structure or damage the soil surface. The significant changes in plant root biomass and soil phosphatase further signified the potential impact of microplastics on soil nutrient and geochemical element cycling. We further constructed species sensitivity distribution curves, revealing that invertebrates had a higher species sensitivity to microplastics, as they can pass through the gut wall of soil nematodes, causing oxidative stress and affecting gene expression. In general, soil is an interconnected complex, and microplastic exposure can directly or indirectly interact with environmental chemical processes in the soil environment, potentially harming the soil ecosystem; however, current research remains insufficient with respect to breadth and depth in terms of the comprehensive "source-sink" mechanism of soil microplastics, the hazard of exposure, and the overall toxic effects.


Assuntos
Microplásticos , Poluentes do Solo , Biota , Ecossistema , Monitoramento Ambiental , Monoéster Fosfórico Hidrolases , Plásticos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Chemosphere ; 303(Pt 2): 134999, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595105

RESUMO

Although microplastic (MP) pollution has been defined as a new global challenge by the United Nations Environment Programme, their abundance and composition has only been studied in-depth within farmland soil, while minimal attention has been placed on urban soil contamination. Accordingly, within the current study, MP abundance and composition is investigated within urban soil from green spaces in Nanjing, eastern China. The average MP abundance in soil was 461 ± 222 items/kg and primarily comprised fibers (39.1%) and fragments (37.7%). MPs <1000 µm in size accounted for 83.7% of the total content and white MPs were the most abundant (26.5%). The dominant polymers were polyethylene glycol terephthalate (32.0%) and polypropylene (20.5%). Moreover, relationship network analysis generated three distinct MP modules based on community similarity. Indeed, the degree of similarity increased by ∼26.8% per kilometer. Furthermore, application of a forward selective optimal multiple regression model identified clay, sand, longitude, and points of interest for recycling bins (RecyclePOI) as the primary spatial and soil environmental factors affecting MP abundance and composition. Additionally, five potential sources of MPs were identified based on the MP diversity integrated index fitting results, and point of interest density (MDII-POI) source analysis (R2 = 0.21-0.62; P < 0.05). In particular, the point of interest of express delivery points (ExpressPOI) were important sources of plastic emissions as they are widely distributed throughout urban and fringe areas. Collectively, the findings of this study provide novel insights regarding quantitative source appointment and regional ecological control of MPs in urban soil.


Assuntos
Microplásticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Plásticos , Solo , Poluentes Químicos da Água/análise
13.
Biotechnol Lett ; 42(7): 1203-1210, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32300998

RESUMO

OBJECTIVE: To simplify CRISPR/Cas9 genome editing in the industrial filamentous fungus Trichoderma reesei based on in vivo guide RNA (gRNA) transcription. RESULTS: Two putative RNA polymerase III U6 snRNA genes were identified in the genome of T. reesei QM6a by BLASTN using Myceliophthora. thermophila U6 snRNA gene as the template. The regions approximately 500 bp upstream of two U6 genes were efficient promoters for the in vivo expression of gRNA. The CRISPR system consisting of Cas9 and in vivo synthesized gRNA under control of the T. reesei U6 snRNA promoters was sufficient to cause a frameshift mutation in the ura5 gene via non-homologous end-joining-mediated events. CONCLUSIONS: We report a simple gene editing method using a CRISPR/Cas9-coupled in vivo gRNA transcription system in T. reesei.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma Fúngico/genética , Hypocreales/genética , RNA Guia de Cinetoplastídeos/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
14.
Nat Commun ; 10(1): 2902, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263173

RESUMO

Exogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolite-modulated targeting of the C. elegans seipin ortholog, SEIP-1. Loss of SEIP-1 function reduces the size of a subset of LDs while over-expression of SEIP-1 has the opposite effect. Ultrastructural analysis reveals SEIP-1 enrichment in an endoplasmic reticulum (ER) subdomain, which co-purifies with LDs. Analyses of C. elegans and bacterial genetic mutants indicate a requirement of polyunsaturated fatty acids (PUFAs) and microbial cyclopropane fatty acids (CFAs) for SEIP-1 enrichment, as confirmed by dietary supplementation experiments. In mammalian cells, heterologously expressed SEIP-1 engages nascent lipid droplets and promotes their subsequent expansion in a conserved manner. Our results suggest that microbial and polyunsaturated fatty acids serve unexpected roles in regulating cellular fat storage by promoting LD diversity.


Assuntos
Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Transporte Proteico
15.
PLoS One ; 9(11): e110957, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375770

RESUMO

We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the 'undescribed' anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically 'difficult' group of animals.


Assuntos
Caenorhabditis/anatomia & histologia , Caenorhabditis/genética , Animais , China , Feminino , Especiação Genética , Variação Genética , Masculino , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...