Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 222(2): 1061-1075, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556907

RESUMO

Lycophytes are a key group for understanding vascular plant evolution. Lycophyte plastomes are highly distinct, indicating a dynamic evolutionary history, but detailed evaluation is hindered by the limited availability of sequences. Eight diverse plastomes were sequenced to assess variation in structure and functional content across lycophytes. Lycopodiaceae plastomes have remained largely unchanged compared with the common ancestor of land plants, whereas plastome evolution in Isoetes and especially Selaginella is highly dynamic. Selaginella plastomes have the highest GC content and fewest genes and introns of any photosynthetic land plant. Uniquely, the canonical inverted repeat was converted into a direct repeat (DR) via large-scale inversion in some Selaginella species. Ancestral reconstruction identified additional putative transitions between an inverted and DR orientation in Selaginella and Isoetes plastomes. A DR orientation does not disrupt the activity of copy-dependent repair to suppress substitution rates within repeats. Lycophyte plastomes include the most archaic examples among vascular plants and the most reconfigured among land plants. These evolutionary trends correlate with the mitochondrial genome, suggesting shared underlying mechanisms. Copy-dependent repair for DR-localized genes indicates that recombination and gene conversion are not inhibited by the DR orientation. Gene relocation in lycophyte plastomes occurs via overlapping inversions rather than transposase/recombinase-mediated processes.


Assuntos
Composição de Bases/genética , Genes de Plantas , Variação Genética , Genomas de Plastídeos , Íntrons/genética , Sequências Repetidas Invertidas/genética , Lycopodiaceae/genética , RNA Ribossômico/genética , Evolução Molecular , Dosagem de Genes , Tamanho do Genoma , Filogenia , Selaginellaceae/genética
2.
Mol Plant Microbe Interact ; 30(6): 489-501, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28353400

RESUMO

Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.


Assuntos
Clorófitas/genética , Embriófitas/genética , Evolução Molecular , Subtilisinas/genética , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Clorófitas/enzimologia , Embriófitas/enzimologia , Embriófitas/microbiologia , Duplicação Gênica , Modelos Genéticos , Micorrizas/fisiologia , Filogenia , Subtilisinas/classificação , Simbiose/genética
3.
PLoS One ; 7(4): e35168, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511984

RESUMO

Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.


Assuntos
Genes Mitocondriais , Genoma de Planta , Huperzia/genética , Mapeamento Cromossômico , Ordem dos Genes
4.
PLoS One ; 6(10): e25836, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998706

RESUMO

Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants.


Assuntos
Bryopsida/genética , Evolução Molecular , Genoma Mitocondrial/genética , Biodiversidade , Bryopsida/classificação , Ordem dos Genes/genética , Íntrons/genética , Sequências Repetitivas de Ácido Nucleico/genética
5.
Am J Bot ; 98(4): 704-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21613169

RESUMO

PREMISE OF THE STUDY: Recent analyses employing up to five genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses. METHODS: We conducted two primary analyses based on 640 species representing 330 families. The first included 25260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19846 aligned bp from 13 genes (representing only the nucleus and plastid). KEY RESULTS: Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms (Mesangiospermae), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae]. Eudicotyledoneae contains a basal grade subtending Gunneridae. Within Gunneridae, Gunnerales are sister to the remainder (Pentapetalae), which comprises (1) Superrosidae, consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae, comprising Berberidopsidales, Santalales, Caryophyllales, Asteridae, and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae, most deep-level relationships are resolved with strong support. CONCLUSIONS: Our analyses confirm that with large amounts of sequence data, most deep-level relationships within the angiosperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics.


Assuntos
DNA de Plantas/análise , Evolução Molecular , Genes de Plantas , Genoma de Planta , Magnoliopsida/genética , Nucleotídeos/análise , Filogenia , Núcleo Celular/genética , Cloroplastos/genética , Magnoliopsida/classificação , Mitocôndrias/genética , Análise de Sequência de DNA
6.
J Mol Evol ; 72(2): 204-14, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153633

RESUMO

Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required. During periods of dehydration and/or desiccation, proteomes struggle to maintain adequate cytoplasmic solute concentrations. The increased usage of charged amino acids (DEHKR) may be one way of maintaining protein hydration, while increased use of aromatic residues (FHWY) protects proteins and nucleic acids by absorbing damaging UV, with both groups of residues thought to be important for the stabilization of protein structures. To test these hypotheses we examined amino acid sequences of orthologous proteins representing both mitochondrion- and plastid-encoded proteomes across streptophytic lineages. We compared relative differences within categories of amino acid residues and found consistent patterns of amino acid compositional fluxuation in extra-membranous regions that correspond with episodes of terrestrialization: positive change in usage frequency for residues with charged side-chains, and aromatic residues of the light-capturing chloroplast proteomes. We also found a general decrease in the usage frequency of hydrophobic, aliphatic, and small residues. These results suggest that amino acid compositional shifts in extra-membrane regions of plastid and mitochondrial proteins may represent biochemical adaptations that allowed green plants to colonize the land.


Assuntos
Sequência de Aminoácidos , Proteínas de Plantas/genética , Estreptófitas/genética , Aminoácidos/química , DNA de Plantas/metabolismo , Ecossistema , Evolução Molecular , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/efeitos da radiação , Estabilidade Proteica , Seleção Genética , Alinhamento de Sequência , Estreptófitas/efeitos da radiação , Raios Ultravioleta
7.
New Phytol ; 186(2): 514-25, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20059702

RESUMO

*The colonization of land by plants fundamentally altered environmental conditions on earth. Plant-mycorrhizal fungus symbiosis likely played a key role in this process by assisting plants to absorb water and nutrients from soil. *Here, in a diverse set of land plants, we investigated the evolutionary histories and functional conservation of three genes required for mycorrhiza formation in legumes and rice (Oryza sativa), DMI1, DMI3 and IPD3. *The genes were isolated from nearly all major plant lineages. Phylogenetic analyses showed that they had been vertically inherited since the origin of land plants. Further, cross-species mutant rescue experiments demonstrated that DMI3 genes from liverworts and hornworts could rescue Medicago truncatula dmi3 mutants for mycorrhiza formation. Yeast two-hybrid assays also showed that bryophyte DMI3 proteins could bind to downstream-acting M. trunculata IPD3 protein. Finally, molecular evolutionary analyses revealed that these genes were under purifying selection for maintenance of their ancestral functions in all mycorrhizal plant lineages. *These results indicate that the mycorrhizal genes were present in the common ancestor of land plants, and that their functions were largely conserved during land plant evolution. The evidence presented here strongly suggests that plant-mycorrhizal fungus symbiosis was one of the key processes that contributed to the origin of land flora.


Assuntos
Genes Fúngicos/genética , Micorrizas/genética , Filogenia , Plantas/microbiologia , Clorófitas/enzimologia , Clorófitas/genética , Funções Verossimilhança , Fenótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido
8.
Curr Genet ; 56(1): 53-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19998039

RESUMO

Plants have large and complex mitochondrial genomes in comparison to other eukaryotes. In bryophytes, the mitochondrial genomes exhibit a mixed mode of conservative and dynamic evolution. Here, we sequenced the complete mitochondrial genome from hornwort Phaeoceros laevis, to investigate the level of conservation in mitochondrial genome evolution within hornworts. The circular molecule consists of 209,482 base pairs and represents the largest known mitochondrial genome of bryophytes. It contains 30 protein genes, 3 rRNA genes, and 21 tRNA genes, with 34 cis-spliced group II introns disrupting 16 protein genes. There are 11 pseudogenes in this genome, and nine of them are shared with the other fully sequenced hornwort chondriome from Megaceros aenigmaticus, a distant relative of P. laevis. These pseudogenes were likely formed during an early stage of hornwort evolution. The two hornwort chondriomes differ by four inversions and translocations, seven genes, and four introns in the genome structure and organization. At the sequence level, they are very similar, with the identity values ranging mostly from 80 to 95% in intergenic spacers, introns, and exons. These data indicate that mitochondrial genome evolution in hornworts is less conservative than in liverworts, but has not reached the dynamic level as seen in seed plants.


Assuntos
Anthocerotophyta/genética , Genoma Mitocondrial/genética , Sequência de Bases , Evolução Biológica , Genes de Plantas , Dados de Sequência Molecular , Pseudogenes
9.
Curr Genet ; 55(6): 601-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19756627

RESUMO

Plant mitochondrial genomes have been known to be highly unusual in their large sizes, frequent intra-genomic rearrangement, and generally conservative sequence evolution. Recent studies show that in early land plants the mitochondrial genomes exhibit a mixed mode of conservative yet dynamic evolution. Here, we report the completely sequenced mitochondrial genome from the liverwort Pleurozia purpurea. The circular genome has a size of 168,526 base pairs, containing 43 protein-coding genes, 3 rRNA genes, 25 tRNA genes, and 31 group I or II introns. It differs from the Marchantia polymorpha mitochondrial genome, the only other liverwort chondriome that has been sequenced, in lacking two genes (trnRucg and trnTggu) and one intron (rrn18i1065gII). The two genomes have identical gene orders and highly similar sequences in exons, introns, and intergenic spacers. Finally, a comparative analysis of duplicated trnRucu and other trnR genes from the two liverworts and several other organisms identified the recent lateral origin of trnRucg in Marchantia mtDNA through modification of a duplicated trnRucu. This study shows that the mitochondrial genomes evolve extremely slowly in liverworts, the earliest-diverging lineage of extant land plants, in stark contrast to what is known of highly dynamic evolution of mitochondrial genomes in seed plants.


Assuntos
DNA Mitocondrial/genética , DNA de Plantas/genética , Evolução Molecular , Genoma Mitocondrial , Genoma de Planta , Hepatófitas/genética , Sequência de Bases , Mapeamento Cromossômico , Sequência Conservada/genética , Genes Mitocondriais , Genes de Plantas , Marchantia/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
10.
J Mol Evol ; 68(6): 665-78, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19475442

RESUMO

Land plants possess some of the most unusual mitochondrial genomes among eukaryotes. However, in early land plants these genomes resemble those of green and red algae or early eukaryotes. The question of when during land plant evolution the dramatic change in mtDNAs occurred remains unanswered. Here we report the first completely sequenced mitochondrial genome of the hornwort, Megaceros aenigmaticus, a member of the sister group of vascular plants. It is a circular molecule of 184,908 base pairs, with 32 protein genes, 3 rRNA genes, 17 tRNA genes, and 30 group II introns. The genome contains many genes arranged in the same order as in those of a liverwort, a moss, several green and red algae, and Reclinomonas americana, an early-branching eukaryote with the most ancestral form of mtDNA. In particular, the gene order between mtDNAs of the hornwort and Physcomitrella patens (moss) differs by only 8 inversions and translocations. However, the hornwort mtDNA possesses 4 derived features relative to green alga mtDNAs--increased genome size, RNA editing, intron gains, and gene losses--which were all likely acquired during the origin and early evolution of land plants. Overall, this genome and those of other 2 bryophytes show that mitochondrial genomes in early land plants, unlike their seed plant counterparts, exhibit a mixed mode of conservative yet dynamic evolution.


Assuntos
Anthocerotophyta/genética , DNA de Plantas , Evolução Molecular , Genes Mitocondriais , Genes de Plantas , Genoma Mitocondrial , Briófitas/genética , Mapeamento Cromossômico , Íntrons , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Biol Direct ; 3: 43, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18939975

RESUMO

BACKGROUND: The C<-->U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated. RESULTS: We found that 1) most editing sites were distributed at the 2nd and 1st codon positions, 2) editing affected codons that resulted in larger hydrophobicity and molecular size changes much more frequently than those with little change involved, 3) editing uniformly increased protein hydrophobicity, 4) editing occurred more frequently in ancestrally T-rich sequences, which were more abundant in genes encoding membrane-bound proteins with many hydrophobic amino acids than in genes encoding soluble proteins, and 5) editing occurred most often in genes found to be under strong selective constraint. CONCLUSION: These analyses show that editing mostly affects functionally important and evolutionarily conserved codon positions, codons and genes encoding membrane-bound proteins. In particular, abundance of RNA editing in plant organellar genomes may be associated with disproportionately large percentages of genes in these two genomes that encode membrane-bound proteins, which are rich in hydrophobic amino acids and selectively constrained. These data support a hypothesis that natural selection imposed by protein functional constraints has contributed to selective fixation of certain editing sites and maintenance of the editing activity in plant organelles over a period of more than four hundred millions years. The retention of genes encoding RNA editing activity may be driven by forces that shape nucleotide composition equilibrium in two organellar genomes of these plants. Nevertheless, the causes of lineage-specific occurrence of a large portion of RNA editing sites remain to be determined.


Assuntos
Deriva Genética , Genoma de Planta/genética , Organelas/genética , Edição de RNA/genética , Seleção Genética , Aminoácidos/genética , Sequência de Bases , Códon/genética , Evolução Molecular , Genes de Plantas , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Peso Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Timina
12.
Mol Phylogenet Evol ; 48(3): 1027-40, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18619549

RESUMO

This study employs three nuclear genes (PHYA, LFY, and GAI1) to reconstruct the phylogenetic and biogeographic history of Magnoliaceae. A total of 104 samples representing 86 taxa from all sections and most subsections were sequenced. Twelve major groups are well supported to be monophyletic within Magnoliaceae and these groups are largely consistent with the recent taxonomic revision at the sectional and subsectional levels. However, relationships at deeper nodes of the subfamily Magnolioideae remain not well resolved. A relaxed clock relying on uncorrelated rates suggests that the complicated divergent evolution of Magnolioideae began around the early Eocene (54.57mya), concordant with paleoclimatic and fossil evidence. Intercontinental disjunctions of Magnoliaceae in the Northern Hemisphere appear to have originated during at least two geologic periods. Some occurred after the middle Miocene, represented by two well-recognized temperate lineages disjunct between eastern Asia and eastern North America. The others may have occurred no later than the Oligocene, with ancient separations between or within tropical and temperate lineages.


Assuntos
Núcleo Celular/metabolismo , Magnoliaceae/genética , Evolução Biológica , Calibragem , DNA de Cloroplastos/genética , Evolução Molecular , Genes de Plantas , Genoma de Planta , Geografia , Modelos Genéticos , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
13.
Syst Biol ; 57(1): 38-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18275001

RESUMO

Despite the prior use of approximately 9000 bp, deep-level relationships within the angiosperm clade, Saxifragales remain enigmatic, due to an ancient, rapid radiation (89.5 to 110 Ma based on the fossil record). To resolve these deep relationships, we constructed several new data sets: (1) 16 genes representing the three genomic compartments within plant cells (2 nuclear, 10 plastid, 4 mitochondrial; aligned, analyzed length = 21,460 bp) for 28 taxa; (2) the entire plastid inverted repeat (IR; 26,625 bp) for 17 taxa; (3) "total evidence" (50,845 bp) for both 17 and 28 taxa (the latter missing the IR). Bayesian and ML methods yielded identical topologies across partitions with most clades receiving high posterior probability (pp = 1.0) and bootstrap (95% to 100%) values, suggesting that with sufficient data, rapid radiations can be resolved. In contrast, parsimony analyses of different partitions yielded conflicting topologies, particularly with respect to the placement of Paeoniaceae, a clade characterized by a long branch. In agreement with published simulations, the addition of characters increased bootstrap support for the putatively erroneous placement of Paeoniaceae. Although having far fewer parsimony-informative sites, slowly evolving plastid genes provided higher resolution and support for deep-level relationships than rapidly evolving plastid genes, yielding a topology close to the Bayesian and ML total evidence tree. The plastid IR region may be an ideal source of slowly evolving genes for resolution of deep-level angiosperm divergences that date to 90 My or more. Rapidly evolving genes provided support for tip relationships not recovered with slowly evolving genes, indicating some complementarity. Age estimates using penalized likelihood with and without age constraints for the 28-taxon, total evidence data set are comparable to fossil dates, whereas estimates based on the 17-taxon data are much older than implied by the fossil record. Hence, sufficient taxon density, and not simply numerous base pairs, is important in reliably estimating ages. Age estimates indicate that the early diversification of Saxifragales occurred rapidly, over a time span as short as 6 million years. Between 25,000 and 50,000 bp were needed to resolve this radiation with high support values. Extrapolating from Saxifragales, a similar number of base pairs may be needed to resolve the many other deep-level radiations of comparable age in angiosperms.


Assuntos
Crassulaceae/genética , Evolução Molecular , Genomas de Plastídeos , Hamamelidaceae/genética , Saxifragaceae/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
14.
BMC Evol Biol ; 7: 217, 2007 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17996110

RESUMO

BACKGROUND: Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA). RESULTS: Comparison of mitochondrial matR and two plastid genes (rbcL and atpB) showed that the synonymous substitution rate in matR was approximately four times slower than those of rbcL and atpB; however, the nonsynonymous substitution rate in matR was relatively high, close to its synonymous substitution rate, indicating that the matR has experienced a relaxed evolutionary history. Analyses of our matR sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae) was sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were successively sister to other rosids, and that Crossosomatales were sister to malvids. CONCLUSION: Compared to plastid genes such as rbcL and atpB, slowly evolving matR produced less homoplasious but not less informative substitutions. Thus, matR appears useful in higher-level angiosperm phylogenetics. Analysis of matR alone identified a novel deep relationship within rosids, the grouping of the COM clade of fabids and malvids, which was not resolved by any previous molecular analyses but recently suggested by floral structural features. Our four-gene analysis supported the placements of Geraniales, Myrtales at basal nodes of the rosid clade and placed Crossosomatales as sister to malvids. We also suggest that the core part of rosids should include fabids, malvids and Crossosomatales.


Assuntos
Endorribonucleases/genética , Magnoliopsida/genética , Nucleotidiltransferases/genética , Filogenia , Plastídeos , Sequência de Bases , DNA Mitocondrial/genética , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Variação Genética , Funções Verossimilhança , Magnoliopsida/classificação , Dados de Sequência Molecular , Ribulose-Bifosfato Carboxilase/genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 103(42): 15511-6, 2006 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17030812

RESUMO

Phylogenetic relationships among the four major lineages of land plants (liverworts, mosses, hornworts, and vascular plants) remain vigorously contested; their resolution is essential to our understanding of the origin and early evolution of land plants. We analyzed three different complementary data sets: a multigene supermatrix, a genomic structural character matrix, and a chloroplast genome sequence matrix, using maximum likelihood, maximum parsimony, and compatibility methods. Analyses of all three data sets strongly supported liverworts as the sister to all other land plants, and analyses of the multigene and chloroplast genome matrices provided moderate to strong support for hornworts as the sister to vascular plants. These results highlight the important roles of liverworts and hornworts in two major events of plant evolution: the water-to-land transition and the change from a haploid gametophyte generation-dominant life cycle in bryophytes to a diploid sporophyte generation-dominant life cycle in vascular plants. This study also demonstrates the importance of using a multifaceted approach to resolve difficult nodes in the tree of life. In particular, it is shown here that densely sampled taxon trees built with multiple genes provide an indispensable test of taxon-sparse trees inferred from genome sequences.


Assuntos
Genoma de Planta , Filogenia , Plantas , Funções Verossimilhança , Dados de Sequência Molecular , Família Multigênica , Plantas/classificação , Plantas/genética
16.
OMICS ; 10(2): 231-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16901231

RESUMO

In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors.


Assuntos
Filogenia , Padrões de Referência , Genômica/normas
17.
BMC Evol Biol ; 5: 73, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16368004

RESUMO

BACKGROUND: Rates of synonymous nucleotide substitutions are, in general, exceptionally low in plant mitochondrial genomes, several times lower than in chloroplast genomes, 10-20 times lower than in plant nuclear genomes, and 50-100 times lower than in many animal mitochondrial genomes. Several cases of moderate variation in mitochondrial substitution rates have been reported in plants, but these mostly involve correlated changes in chloroplast and/or nuclear substitution rates and are therefore thought to reflect whole-organism forces rather than ones impinging directly on the mitochondrial mutation rate. Only a single case of extensive, mitochondrial-specific rate changes has been described, in the angiosperm genus Plantago. RESULTS: We explored a second potential case of highly accelerated mitochondrial sequence evolution in plants. This case was first suggested by relatively poor hybridization of mitochondrial gene probes to DNA of Pelargonium hortorum (the common geranium). We found that all eight mitochondrial genes sequenced from P. hortorum are exceptionally divergent, whereas chloroplast and nuclear divergence is unexceptional in P. hortorum. Two mitochondrial genes were sequenced from a broad range of taxa of variable relatedness to P. hortorum, and absolute rates of mitochondrial synonymous substitutions were calculated on each branch of a phylogenetic tree of these taxa. We infer one major, approximately 10-fold increase in the mitochondrial synonymous substitution rate at the base of the Pelargonium family Geraniaceae, and a subsequent approximately 10-fold rate increase early in the evolution of Pelargonium. We also infer several moderate to major rate decreases following these initial rate increases, such that the mitochondrial substitution rate has returned to normally low levels in many members of the Geraniaceae. Finally, we find unusually little RNA editing of Geraniaceae mitochondrial genes, suggesting high levels of retroprocessing in their history. CONCLUSION: The existence of major, mitochondrial-specific changes in rates of synonymous substitutions in the Geraniaceae implies major and reversible underlying changes in the mitochondrial mutation rate in this family. Together with the recent report of a similar pattern of rate heterogeneity in Plantago, these findings indicate that the mitochondrial mutation rate is a more plastic character in plants than previously realized. Many molecular factors could be responsible for these dramatic changes in the mitochondrial mutation rate, including nuclear gene mutations affecting the fidelity and efficacy of mitochondrial DNA replication and/or repair and--consistent with the lack of RNA editing--exceptionally high levels of "mutagenic" retroprocessing. That the mitochondrial mutation rate has returned to normally low levels in many Geraniaceae raises the possibility that, akin to the ephemerality of mutator strains in bacteria, selection favors a low mutation rate in plant mitochondria.


Assuntos
DNA Mitocondrial/genética , DNA de Plantas/genética , Evolução Molecular , Geraniaceae/genética , Sequência de Bases , Cloroplastos/genética , Variação Genética , Genoma de Planta , Geraniaceae/classificação , Mitocôndrias/genética , Pelargonium/genética , Filogenia , Plantago/genética , Reação em Cadeia da Polimerase
18.
Proc Natl Acad Sci U S A ; 101(51): 17741-6, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15598738

RESUMO

Plant mitochondrial (mt) genomes have long been known to evolve slowly in sequence. Here we show remarkable departure from this pattern of conservative evolution in a genus of flowering plants. Substitution rates at synonymous sites vary substantially among lineages within Plantago. At the extreme, rates in Plantago exceed those in exceptionally slow plant lineages by approximately 4,000-fold. The fastest Plantago lineages set a new benchmark for rapid evolution in a DNA genome, exceeding even the fastest animal mt genome by an order of magnitude. All six mt genes examined show similarly elevated divergence in Plantago, implying that substitution rates are highly accelerated throughout the genome. In contrast, substitution rates show little or no elevation in Plantago for each of four chloroplast and three nuclear genes examined. These results, combined with relatively modest elevations in rates of nonsynonymous substitutions in Plantago mt genes, indicate that major, reversible changes in the mt mutation rate probably underlie the extensive variation in synonymous substitution rates. These rate changes could be caused by major changes in any number of factors that control the mt mutation rate, from the production and detoxification of oxygen free radicals in the mitochondrion to the efficacy of mt DNA replication and/or repair.


Assuntos
DNA Mitocondrial/genética , Flores/genética , Genes de Plantas/genética , Variação Genética/genética , Mitocôndrias/genética , Plantago/citologia , Plantago/genética , Animais , Núcleo Celular/genética , Cloroplastos/genética , Ciclo-Oxigenase 1 , Evolução Molecular , Flores/classificação , Flores/citologia , Isoenzimas/genética , Dados de Sequência Molecular , Mutação/genética , Filogenia , Plantago/classificação , Prostaglandina-Endoperóxido Sintases/genética , Fatores de Tempo , Árvores/genética
19.
BMC Evol Biol ; 4: 40, 2004 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15496229

RESUMO

BACKGROUND: The phylogenetic relationships among the holoparasites of Rafflesiales have remained enigmatic for over a century. Recent molecular phylogenetic studies using the mitochondrial matR gene placed Rafflesia, Rhizanthes and Sapria (Rafflesiaceae s. str.) in the angiosperm order Malpighiales and Mitrastema (Mitrastemonaceae) in Ericales. These phylogenetic studies did not, however, sample two additional groups traditionally classified within Rafflesiales (Apodantheaceae and Cytinaceae). Here we provide molecular phylogenetic evidence using DNA sequence data from mitochondrial and nuclear genes for representatives of all genera in Rafflesiales. RESULTS: Our analyses indicate that the phylogenetic affinities of the large-flowered clade and Mitrastema, ascertained using mitochondrial matR, are congruent with results from nuclear SSU rDNA when these data are analyzed using maximum likelihood and Bayesian methods. The relationship of Cytinaceae to Malvales was recovered in all analyses. Relationships between Apodanthaceae and photosynthetic angiosperms varied depending upon the data partition: Malvales (3-gene), Cucurbitales (matR) or Fabales (atp1). The latter incongruencies suggest that horizontal gene transfer (HGT) may be affecting the mitochondrial gene topologies. The lack of association between Mitrastema and Ericales using atp1 is suggestive of HGT, but greater sampling within eudicots is needed to test this hypothesis further. CONCLUSIONS: Rafflesiales are not monophyletic but composed of three or four independent lineages (families): Rafflesiaceae, Mitrastemonaceae, Apodanthaceae and Cytinaceae. Long-branch attraction appears to be misleading parsimony analyses of nuclear small-subunit rDNA data, but model-based methods (maximum likelihood and Bayesian analyses) recover a topology that is congruent with the mitochondrial matR gene tree, thus providing compelling evidence for organismal relationships. Horizontal gene transfer appears to be influencing only some taxa and some mitochondrial genes, thus indicating that the process is acting at the single gene (not whole genome) level.


Assuntos
Transferência Genética Horizontal , Genes de Plantas , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Teorema de Bayes , Núcleo Celular/genética , Cloroplastos/genética , Funções Verossimilhança , Mitocôndrias/genética , Análise de Sequência de DNA
20.
Trends Plant Sci ; 9(10): 477-83, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15465682

RESUMO

As systematists grapple with assembling the Tree of Life, recent studies have encouraged a genomic-scale approach, obtaining DNA sequence data for entire nuclear, plastid or mitochondrial genomes for a few exemplar taxa. Some have proclaimed that this comparative genomic strategy heralds the end of incongruence in phylogeny reconstruction. Although we applaud the use of many genes to resolve phylogenetic patterns, there is a significant caveat. In spite of, or even because of, the abundant data per taxon, whole-genome sequencing for a few exemplars can provide completely resolved and strongly supported, but incorrect, evolutionary reconstructions. We provide a conspicuous example that includes Amborella, the putative sister of all other extant angiosperms, highlighting the limits of phylogenetics when whole genomes are used but taxon sampling is poor.


Assuntos
Genoma de Planta , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Códon/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...