Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626837

RESUMO

Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer. The results showed that the preparation of porous PLLA fiber membrane loaded with 0.2 % Cur was achieved by adjusting the spinning-related parameters, which could ensure that the composite dressing had sufficient anti-inflammatory, antibacterial and antioxidant properties. The HPAN membrane treated with alkali for 30 min had significantly enhanced liquid wetting ability, and the unidirectional transport of liquid could be achieved by simple combination with the 20 um PCPLLA fiber membrane. In addition, the 4 % loaded PCA showed more obvious color difference than the colorimetric membrane. In vivo and ex vivo experiments have demonstrated the potential of multifunctional dressings for the treatment of chronic wounds.


Assuntos
Bandagens , Curcumina , Poliésteres , Cicatrização , Concentração de Íons de Hidrogênio , Poliésteres/química , Porosidade , Animais , Cicatrização/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Resinas Acrílicas/química , Antocianinas/química , Antocianinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Brassica/química
2.
Biomicrofluidics ; 18(2): 024103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571910

RESUMO

Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.

3.
J Phys Chem Lett ; 15(12): 3441-3449, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38511538

RESUMO

The vulnerability of mixed halide perovskite nanocrystals (NCs) remains challenging because of the weak interaction between commonly employed ligands, oleic acid/oleylamine (OAm/OA) and halide anions, coupled with substantial surface phonon energy. Here, we introduce 3-aminopropyltriethoxysilane (APTES) as a capping ligand to modify CsPbBrI2 NCs to enhance the interactions between them. The optical properties have been significantly enhanced, and halide segregation has been suppressed, both of which can be attributed to the reduced phonon energy and exciton-phonon coupling strength. Moreover, these APTES-CsPbBrI2 NCs exhibit a broad color gamut and sustained color stability during long-term operation, indicating their promising potential in display technologies. This work may offer insights into surface engineering to enhance the properties and band stability of mixed halide perovskite NCs.

4.
ACS Appl Mater Interfaces ; 16(14): 17145-17162, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534071

RESUMO

The fabrication of antifouling zwitterionic polymer brushes represents a leading approach to mitigate nonspecific adhesion on the surfaces of medical devices. This investigation seeks to elucidate the correlation between the material composition and structural attributes of these polymer brushes in preventing protein adhesion. To achieve this goal, we modeled three different zwitterionic brushes, namely, carboxybetaine methacrylate (CBMA), sulfobetaine methacrylate (SBMA), and (2-(methacryloyloxy)ethyl)-phosphorylcholine (MPC). The simulations revealed that elevating the grafting density enhances the structural stability, hydration strength, and resistance to protein adhesion exhibited by the polymer brushes. PCBMA manifests a more robust hydration layer, while PMPC demonstrates the slightest interaction with proteins. In a comprehensive evaluation, PSBMA polymer brushes emerged as the best choice with superior stability, enhanced protein repulsion, and minimally induced protein deformation, resulting in effective resistance to nonspecific adhesion. The high-density SBMA polymer brushes significantly reduce the level of protein adhesion in AFM testing. In addition, we have pioneered the quantitative characterization of hydration repulsion in polymer brushes by analyzing the hydration repulsion characteristics at different materials and graft densities. In summary, our study provides a nuanced understanding of the material and structural determinants influencing the capacity of zwitterionic polymer brushes to thwart protein adhesion. Additionally, it presents a quantitative elucidation of hydration repulsion, contributing to the advancement and application of antifouling polymer brushes.


Assuntos
Polímeros , Proteínas , Polímeros/química , Fenômenos Físicos , Adsorção , Metacrilatos/química
5.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38363999

RESUMO

Short nanopores find extensive applications, capitalizing on their high throughput and detection resolution. Ionic behaviors through long nanopores are mainly determined by charged inner-pore walls. When pore lengths decrease to sub-200 nm, charged exterior surfaces provide considerable modulation to ion current. We find that the charge status of inner-pore walls affects the modulation of ion current from charged exterior surfaces. For 50-nm-long nanopores with neutral inner-pore walls, the charged exterior surfaces on the voltage (surfaceV) and ground (surfaceG) sides enhance and inhibit the ion transport by forming ion enrichment and depletion zones inside nanopores, respectively. For nanopores with both charged inner-pore and exterior surfaces, continuous electric double layers enhance the ion transport through nanopores significantly. The charged surfaceV results in higher ion current by simultaneously weakening the ion depletion at pore entrances and enhancing the intra-pore ion enrichment. The charged surfaceG expedites the exit of ions from nanopores, resulting in a decrease in ion enrichment at pore exits. Through adjustment in the width of charged-ring regions near pore boundaries, the effective charged width of the charged exterior is explored at ∼20 nm. Our results may provide a theoretical guide for further optimizing the performance of nanopore-based applications, such as seawater desalination, biosensing, and osmotic energy conversion.

6.
Acta Biomater ; 178: 111-123, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423351

RESUMO

High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times. The developed high-density zwitterionic polymer brushes achieve long-lasting and effective lubricity (µ<0.0078) and are implanted in rabbits for four hours without bio-adhesion and thrombosis in the absence of anticoagulants such as heparin. Experiments and molecular dynamics simulations demonstrate that graft mass plays a decisive role in the lubricity and anti-adhesion of polymer brushes, and it is proposed to predict the anti-adhesion of polymer brushes by their lubricity to avoid costly and time-consuming bioassays during the development of amphoteric polymer brushes. A quantitative influence of hydration in the anti-adhesion properties of amphiphilic polymer brushes is also revealed. Thus, this study provides a new approach to safe, long-lasting lubrication and anticoagulant surface modification for medical devices in contact with blood. STATEMENT OF SIGNIFICANCE: High friction and bioadhesion on medical device surfaces can pose a significant risk to patients. In response, we have developed a safer, simpler, and more application-specific surface modification strategy that addresses both the lubrication and anti-bioadhesion needs of medical device surfaces. We used dopamine and sodium alginate as intermediate layers to drastically increase the grafting density of the zwitterionic brushes and enabled the modified surfaces to have an extremely low coefficient of friction (µ = 0.0078) and to remain non-bioadhesive for 4 hours in vivo. Furthermore, we used molecular dynamics simulations to gain insight into the mechanisms behind the superior anti-adhesion properties of the high-density polymer brushes. Our work contributes to the development and application of surface-modified coatings.


Assuntos
Fibrinolíticos , Polímeros , Animais , Humanos , Coelhos , Polímeros/farmacologia , Dopamina , Lubrificação , Propriedades de Superfície , Alginatos/farmacologia
7.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058217

RESUMO

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

8.
Int J Biol Macromol ; 254(Pt 3): 127653, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918597

RESUMO

Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting. Then, heparin was grafted onto the modified PVC surface using different grafting strategies to prepare different heparinized surfaces. The experimental results indicated that the sodium alginate (SA) and carboxymethyl chitosan (CCS) used as interlayers could significantly increase the graft density of heparin to improve the anticoagulant effects and hemocompatibility of heparinized surfaces. In addition, the modification of heparin can further improve the anticoagulant effects. The CCS/low-molecular-weight heparin (LWMH) surface has the best anticoagulant properties, which can prolong the activated partial thromboplastin time (APTT) values of human plasma for about 35 s, reduce the hemolysis rates to <0.3 %, and perform well in the in-vitro blood circulation test. The heparinized surfaces prepared in this work have great application potential in anticoagulant treatment for medical devices.


Assuntos
Quitosana , Trombose , Humanos , Heparina/farmacologia , Heparina/química , Cloreto de Polivinila , Quitosana/química , Alginatos , Anticoagulantes/farmacologia , Anticoagulantes/química , Tempo de Tromboplastina Parcial
9.
Acta Biomater ; 175: 76-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128641

RESUMO

The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Humanos , Polímeros/química , Próteses e Implantes
10.
Nanoscale ; 15(46): 18696-18706, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947348

RESUMO

Short nanopores have various applications in biosensing, desalination, and energy conversion. Here, the modulation of ionic transport by charged exterior surfaces is investigated through simulations with sub-200 nm long nanopores under applied voltages. Detailed analysis of the ionic current, electric field strength, and fluid flow inside and outside nanopores reveals that charged exterior surfaces can increase ionic conductance by increasing both the concentration and migration speed of charge carriers. The electric double layers near charged exterior surfaces provide an ion pool and an additional passageway for counterions, which lead to enhanced exterior surface conductance and ionic concentrations at pore entrances and inside the nanopores. We also report that charges on the membrane surfaces increase the electric field strength inside nanopores. The effective width of a ring with surface charges placed at pore entrances (Lcs) is considered as well by studying the dependence of the current on Lcs. We find a linear relationship between the effective Lcs and the surface charge density and voltage, and an inverse relationship between the geometrical pore length and salt concentration. Our results elucidate the modulation mechanism of ionic transport through short nanopores by charged exterior surfaces, which is important for the design and fabrication of porous membranes.

11.
Langmuir ; 39(39): 13932-13945, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37722128

RESUMO

Microfluidic chips have been widely applied in biology and medical research for stably generating uniform droplets that can be solidified into hydrogel microspheres. However, issues such as low microsphere yield, lengthy experimental processes, and susceptibility to environmental interference need to be addressed. In this work, a simple and effective method was developed to modify microfluidic chips at room temperature to improve the production performance of hydrogel microspheres. Numerical simulation-assisted experiments were conducted to comprehensively understand the effect of solution viscosity, hydrophilicity, and flow rate ratio on droplet formation during microsphere production. Chitosan was selected as the main component and combined with poly(ethylene glycol) diacrylate to prepare photocurable hydrogel microspheres as a demonstration. As a result, grafting fluoro-silane (FOTS) increased the contact angle of the channel from 90 to approximately 110°, which led to a 12.2% increase in droplet yield. Additionally, FOTS-modification attenuated the impact of the flow rate ratio on droplet yield by 19.1%. Alternatively, depositing dopamine decreased the channel's contact angle from 90 to 60°, resulting in a 21.4% increase in particle size and enabling the chip to adjust droplet size over a wider range. Further study demonstrates that the obtained hydrogel microspheres can be modified with layers of aldehyde, which can potentially be used for controlled drug release. Overall, this study proposed a facile method for adjusting the yield and droplet size through surface treatment of microfluidic chips while also enhancing the understanding of the synergistic effects of multiple factors in microfluidics-based microsphere production.

12.
Int J Biol Macromol ; 239: 124167, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963544

RESUMO

Antibacterial hemostatic medical dressings have become feasible solutions in response to the challenging wound-healing process. In this study, a novel fiber-type medical dressing with excellent breathable, antibacterial, and hemostatic qualities was created using sodium alginate (SA), microcrystalline cellulose (MCC), polyvinyl alcohol (PVA), and Euphorbia humifusa Willd (EHW) based on microfluidic spinning technology, and the properties of the dressing were characterized. The orthogonal test demonstrates that PVA and MCC can enhance the mechanical properties of the fiber, which is a crucial requirement for fiber assembly to form the dressing. Moreover, the presence of EHW enhances the dressing's antibacterial and hemostatic qualities. The dressings have been proven to have potent antibacterial and hemostatic properties as well as the ability to considerably speed up wound healing and skin tissue regeneration in the in-vitro and in-vivo tests. In conclusion, this innovative fiber-type medical dressing containing SA, MCC, PVA, and EHW has enormous potential for managing wounds caused by bacteria.


Assuntos
Euphorbia , Hemostáticos , Álcool de Polivinil/química , Hemostáticos/farmacologia , Microfluídica , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens/microbiologia
13.
Langmuir ; 38(42): 12935-12943, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36244025

RESUMO

Besides the dominant NaCl, natural seawater/river water contains trace multivalent ions, which can provide effective screening of surface charges. Here, in both negatively and positively charged nanopores, influences from divalent ions as counterions and co-ions have been investigated with respect to the performance of osmotic energy conversion (OEC) under natural salt gradients. As counterions, trace Ca2+ ions can suppress the electric power and conversion efficiency significantly. The reduced OEC performance is due to the bivalence and low diffusion coefficient of Ca2+ ions instead of the uphill transport of divalent ions discovered in the previous work. Effectively screened charged surfaces by Ca2+ ions induce an enhanced diffusion of Cl- ions which simultaneously decreases the net ion penetration and ionic selectivity of the nanopore. As co-ions, Ca2+ ions have weak effects on the OEC performance. The promotion from charged exterior surfaces in OEC processes for ultrashort nanopores is also studied, with an effective region of ∼200 nm in width beyond pore boundaries independent of the presence of Ca2+ ions. Our results shed light on the physical details of the nanofluidic OEC process under natural seawater/river water conditions, which can provide a useful guide for high-performance osmotic energy harvesting.


Assuntos
Rios , Cloreto de Sódio , Íons , Água do Mar , Água
14.
Electrophoresis ; 43(23-24): 2428-2435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193776

RESUMO

As an important property of porous membranes, the surface charge property determines many ionic behaviors of nanopores, such as ionic conductance and selectivity. Based on the dependence of electric double layers on bulk concentrations, ionic conductance through nanopores at high and low concentrations is governed by the bulk conductance and surface charge density, respectively. Here, through the investigation of ionic conductance inside track-etched single polyethylene terephthalate (PET) nanopores under various concentrations, the surface charge density of PET membranes is extracted as ∼-0.021 C/m2 at pH 10 over measurements with 40 PET nanopores. Simulations show that surface roughness can cause underestimation in surface charge density due to the inhibited electroosmotic flow. Then, the averaged pore size and porosity of track-etched multipore PET membranes are characterized by the developed ionic conductance method. Through coupled theoretical predictions in ionic conductance under high and low concentrations, the averaged pore size and porosity of porous membranes can be obtained simultaneously. Our method provides a simple and precise way to characterize the pore size and porosity of multipore membranes, especially for those with sub-100 nm pores and low porosities.


Assuntos
Nanoporos , Polímeros , Porosidade , Propriedades de Superfície , Íons/química , Polietilenotereftalatos/química
15.
J Phys Chem Lett ; 13(24): 5669-5676, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35709379

RESUMO

High-performance osmotic energy conversion requires both large ionic throughput and high ionic selectivity, which can be significantly promoted by exterior surface charges simultaneously, especially for short nanopores. Here, we investigate the enhancement of ionic diffusion by charged exterior surfaces under various conditions and explore corresponding effective charged areas. From simulations, ionic diffusion is promoted more significantly by exterior surface charges through nanopores with a shorter length, wider diameter, and larger surface charge density or under higher salt gradients. Effective widths of the charged ring regions near nanopores are reversely proportional to the pore length and linearly dependent on the pore diameter, salt gradient, and surface charge density. Due to the important role of effective charged areas in the propagation of ionic diffusion through single nanopores to cases with porous membranes, our results may provide useful guidance to the design and fabrication of porous membranes for practical high-performance osmotic energy harvesting.

16.
Small ; 18(13): e2107548, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146921

RESUMO

All-inorganic lead halide perovskite (CsPbX3 , X = Cl, Br, I, or their mixture) nanocrystals (NCs) have achieved inspiring advancements in optoelectronic fields but still suffer from poor durability when exposed to environmental stimuli such as water, irradiation and heat. Herein, a strategy of employing pyrophosphate as the inert shell for CsPbX3 NCs is reported. The strong binding between pyrophosphate and CsPbBr3 surface can stabilize the perovskite structure well. The as-obtained core@shell CsPbBr3 @NH4 AlP2 O7 NCs exhibit impressive stability against water and maintain the initial optical properties with negligible change in 400 days. Furthermore, significant improvement of irradiation/thermal resistance is realized due to the protecting role of pyrophosphate. The NCs can retain 100% and ≈90% of the original PL after hundreds of heating/cooling cycles and several hundred hours of UV light irradiation, respectively. As a result, the core@shell products can be directly used for high-resolution inkjet printing, enabling the printed fluorescent information to be resistant under harsh environmental conditions. This work provides a promising way for the synthesis of highly stable encapsulated perovskite NCs and demonstrates a great potential in practical applications.


Assuntos
Nanopartículas , Água , Difosfatos , Nanopartículas/química
17.
Nanoscale ; 13(48): 20387-20395, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34853844

RESUMO

Solar-driven interfacial steam generation (SISG) has attracted much attention in recent years as a solution to freshwater scarcity and the energy crisis. Currently, research interests are mainly focused on standard conditions under "1-sun" illumination, which we believe are insufficient on their own. Gaining insight and understanding about SISG under both weak and strong irradiation have important implications for real-world use that are rarely presented in relevant discussions. In this review, we aim to discuss SISG under weak (<1 sun) and strong solar irradiation (>1 sun), both of which are often undervalued but necessary for real application. By analyzing state-of-the-art techniques and recent research progress, we provide some possible strategies, in terms of both energy and water management, for improving the performance of SISG under different irradiation powers. Finally, we also give a summary and our perspectives on the directions that the future development of this exciting field might take.

18.
Anal Chem ; 92(24): 16188-16196, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33216526

RESUMO

Nanopores that exhibit ionic current rectification (ICR) behave like diodes such that they transport ions more efficiently in one direction than in the other. Conical nanopores have been shown to rectify ionic current, but only those with at least 500 nm in length exhibit significant ICR. Here, through the finite element method, we show how ICR of conical nanopores with lengths below 200 nm can be tuned by controlling individual charged surfaces, that is, the inner pore surface (surfaceinner) and exterior pore surfaces on the tip and base side (surfacetip and surfacebase). The charged surfaceinner and surfacetip can induce obvious ICR individually, while the effects of the charged surfacebase on ICR can be ignored. The fully charged surfaceinner alone could render the nanopore counterion-selective and induces significant ion concentration polarization in the tip region, which causes reverse ICR compared to nanopores with all surfaces charged. In addition, the direction and degree of rectification can be further tuned by the depth of the charged surfaceinner. When considering the exterior membrane surface only, the charged surfacetip causes intrapore ionic enrichment and depletion under opposite biases, which results in significant ICR. Its effective region is within ∼40 nm beyond the tip orifice. We also found that individual charged parts of the pore system contributed to ICR in an additive way because of the additive effect on the ion concentration regulation along the pore axis. With various combinations of fully/partially charged surfaceinner and surfacetip, diverse ICR ratios from ∼2 to ∼170 can be achieved. Our findings shed light on the mechanism of ICR in ultrashort conical nanopores and provide a useful guide to the design and modification of ultrashort conical nanopores in ionic circuits and nanofluidic sensors.

19.
ACS Appl Mater Interfaces ; 12(41): 46923-46932, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32966045

RESUMO

The removal of oil from the water surface is vital to protect the environment and living organisms against the threats posed by industrial oily wastewater and offshore oil spills. High cost, low efficiency, and environmental pollution limit the widespread use of the commercial methods of oil-water separation. In this study, the prewetting polypropylene-wood pulp fiber composite nonwoven fabric (PWNF) has been used in the gravity-driven separation of the oil-water mixture. The prewetting PWNF displayed superior underwater oleophobic properties, and the underwater kerosene contact angle was 137.65° ± 4.27°. The oil-water interfacial tension in the microchannels among the PWNF fibers prevented the oil from passing through the microchannels; however, it allowed the passage of water. The PWNF membrane maintained an excellent oil-water separation performance after repeated separation and long-term soaking cycles. The separation membrane maintained 75% and 50% of the initial separation performance after 40 repeat cycles and water immersion for more than 20 days, respectively. The separation rate of the PWNF membrane was also investigated as a function of salt solution concentration, temperature, and pH. Meanwhile, the influences of prewetting time, prewetting temperature, and different dyeing condition of the mixture on the separation rate were clarified. The destruction of the oil-water contact interface was suggested as the main failure mode of the developed PWNF separation membrane. The maximum kerosene height that the PWNF separation membrane could sustain was 800 mm. The obtained results confirmed that the PWNF separation membrane exhibited the high potential of widespread use in various environments for achieving efficient and stable separations, especially for the oily wastewater treatment.

20.
Langmuir ; 36(22): 6073-6078, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32374169

RESUMO

The electrochemical reduction of deuterons (2D+ + 2e- → D2) at Pt nanodisk electrodes (radius = 15-100 nm) in D2O solutions containing deuterium chloride (DCl) results in the formation of a single gas nanobubble at the electrode surface. Analogous to that previously observed for the electrochemical generation of H2 nanobubbles, the nucleation and growth of a stable D2 nanobubble is characterized in voltammetric experiments by a highly reproducible and well-resolved sudden drop in the faradaic current, a consequence of restricted mass transport of D+ to the electrode surface following the liquid-to-gas phase transition. D2 nanobubbles are stable under potential control due to a dynamic equilibrium existing between D2 gas dissolution and electrochemical generation of D2 at the circumference of the Pt nanodisk electrode. Remarkably, within the error of the experimental measurement (<6%), the electrochemical current required to nucleate a D2 gas phase in a D2O solution is identical to that for the H2 gas phase in a H2O solutions, indicating that the concentration required for nucleating a D2 nanobubble in D2O (0.29 M) is ∼1.25 times larger than that for a H2 nanobubble (0.23 M), while the supersaturation is ∼300 in each case. We further demonstrate that individual nanobubbles can be electrogenerated in mixed D2O/H2O solutions containing both D+ and H+ at respective individual concentrations well below those required to nucleate a gas phase containing either pure D2 or H2. This latter finding indicates that the resulting nanobubbles comprise a mixture of D2, H2, and HD molecules with the chemical composition of a nanobubble determined by the concentrations and diffusivities of D+ and H+ in the mixed D2O/H2O solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...