Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 651: 128-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542888

RESUMO

CoSe2/CoP with rich Se- and P-vacancies and heterogeneous interfaces (v-CoSe2/CoP) is grown on the surface of nickel foam via a two-step strategy: electrodeposition and NaBH4 reduction, which can be used as the cathode material in asymmetric supercapacitors. The SEM characterization reveals the honeycomb-like structure of the v-CoSe2/CoP, and the results of EPR, XPS and HRTEM reveal the existence of anionic vacancies and heterogeneous interfaces in the v-CoSe2/CoP. The as-fabricated v-CoSe2/CoP exhibits high specific capacitance (3206 mF cm-2 at 1.0 mA cm-2) and cyclic stability (91 % capacitance retention after 2000 cycles). An asymmetric supercapacitor is assembled by using the v-CoSe2/CoP and activated carbon (AC) as cathode and anode materials, respectively, which displays a high energy density of 40.6 Wh kg-1 at the power density of 211.5 W kg-1. The outstanding electrochemical performances of the v-CoSe2/CoP might be ascribed to the synergistic effects of Se- and P-vacancies and the heterogeneous interfaces in the v-CoSe2/CoP.

2.
Polymers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571047

RESUMO

In this study, carbon nanotubes (CNTs) are functionalized through diazonium salt reaction to introduce polar groups onto their surfaces. These functionalized CNTs (FCNTs) are added into PPO solutions at different loadings (0 wt%, 0.5 wt%, 1 wt%, 1.5 wt%) and used for electrospinning. The results show that the addition of FCNTs facilitate the production of PPO veils having small fiber diameters. The veils are used as interleaves in CF/EP composite laminates. The Mode I and Mode II interlaminar fracture toughness tests reveal that PPO veils containing 0.5 wt% FCNTs exhibit the optimal toughening. GICini and GIIC have an improvement of approximately 120% and 180% over the untoughened samples, respectively, which is 15% and 26% higher than that of PPO veils containing no CNTs, respectively. The toughening mechanism is also analyzed using scanning electron microscopy (SEM).

3.
Polymers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987239

RESUMO

Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus reduces the filtration efficiency. In this work, a kind of composite air-filter with high efficiency and low resistance was fabricated by alternating lamination of ultrathin electronspun nano-layer and melt-blown layer without corona charging treatment. The effects of fiber diameter, pore size, porosity, layer number, and weight on filtration performance were investigated. Meanwhile, the surface hydrophobicity, loading capacity, and storage stability of the composite filter were studied. The results indicate that the filters (18.5 gsm) laminated by 10 layers fiber-webs present excellent filtration efficiency (97.94%), low pressure drop (53.2 Pa), high quality factor (QF 0.073 Pa-1), and high dust holding capacity (9.72 g/m2) for NaCl aerosol particles. Increasing the layers and reducing individual layer weight can significantly improve filtration efficiency and reduce pressure drop of the filter. The filtration efficiency decayed slightly from 97.94% to 96.48% after 80 days storage. The alternate arrangement of ultra-thin nano and melt-blown layers constructed a layer-by-layer interception and collaborative filtering effect in the composite filter, realizing the high filtration efficiency and low resistance without high voltage corona charging. These results provided new insights for the application of nonwoven fabrics in air filtration.

4.
J Colloid Interface Sci ; 590: 467-475, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561596

RESUMO

With the rapid development of electronic communications, coated fabrics with EMI shielding capability have attracted increasing attention due to their broad applications in military, civilian, and commercial fields. The coating structure plays a vital role in EMI shielding performance and the fundamental understanding of how the coating structure affects the EMI shielding performance of the coated fabric is urgently needed. In this work, the coating structure has been systematically modulated to study its effects on the shielding performance of the corresponding coated fabric for the rational design of the high-performance EMI shielding materials. Owing to the multiple reflections of the electromagnetic waves triggered by the graphene oxide (GO)/ polypyrrole (PPy) interfaces, the shielding effectiveness (SE) of the coated fabric reaches 39.1 dB by increasing the amount of interface in the coating. Furthermore, more GO/PPy interfaces in the coating results in stronger EMI shielding enhancement once the conductive network is built. This work provides a guideline for the judicious design of shields to achieve excellent EMI shielding performances and offers opportunities for new-generation portable and wearable EMI shielding products.

5.
Adv Mater ; 32(47): e2005481, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33089555

RESUMO

Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic-inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.

6.
Polymers (Basel) ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076573

RESUMO

Developing recyclable, reworkable, and intelligent thermosetting polymers, as a long-standing challenge, is highly desirable for modern manufacturing industries. Herein, we report a polyhexahydrotriazine thermoset (PHT) prepared by a one-pot polycondensation between 4-aminophenyl disulfide and paraformaldehyde. The PHT has a glass transition temperature of 135 °C and good solvent resistance. The incorporation of dual stimuli-responsive groups (disulfide bond and hexahydrotriazine ring) endows the PHT with re-processability, re-workability, and damage monitoring function. The PHT can be repeatedly reprocessed by hot pressing, and a near 100% recovery of flexural strength is achieved. The PHT can also degrade in inorganic acid or organic thiol solutions at room temperature. The thermally reworkable test demonstrates that, after heating the PHT at 200 °C for 1 h, the residuals can be easily wiped off. Finally, the PHT exhibits a reversible mechanochromic behavior when damaged.

7.
Nanoscale ; 12(32): 16690-16696, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32766629

RESUMO

Three-dimensional (3D) nanofibrous scaffolds are at the forefront of tissue engineering research. However, owing to the compact geometries or unstable reserved pores, the scaffolds produced by the current techniques provide limited in-depth cell infiltration, leaving the regeneration of 3D tissues a major challenge. Herein, we have developed a novel single-step 3D electrospinning technique to create 3D rope-like or cloud-like nanofibrous scaffolds by introducing 0 to 0.9 wt% of silver nanoparticles (Ag NPs) into a spinning system and provided an insight into the mechanism. The incorporation of Ag NPs caused intense jet whipping and elevated fiber conductivity, allowing reverse charge transfer and segmented charge storage to provoke vertical collection of waved spirals. The resultant scaffolds exhibited ultrahigh specific pore volumes, facilitating in-depth cell attachment, migration, and proliferation. This work demonstrated a feasible approach to establish versatile 3D culture nanofibrous platforms for a variety of biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanofibras , Prata , Engenharia Tecidual , Alicerces Teciduais
8.
Materials (Basel) ; 13(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570860

RESUMO

In this work, the tensile, compressive, and flexural properties of three types of 3D woven composites were studied in three directions. To make an accurate comparison, three 3D woven composites are made to have the same fiber volume content by controlling the weaving parameters of 3D fabric. The results show that the 3D orthogonal woven composite (3DOWC) has better overall mechanical properties than those of the 3D shallow straight-joint woven composite (3DSSWC) and 3D shallow bend-joint woven composite (3DSBWC) in the warp direction, including tension, compression, and flexural strength. Interestingly their mechanical properties in the weft direction are about the same. In the through-thickness direction, however, the tensile and flexural strength of 3DOWC is about the same as 3DSBW, both higher than that of 3DSSWC. The compressive strength, on the other hand, is mainly dependent on the number of weft yarns in the through-thickness direction.

9.
Colloids Surf B Biointerfaces ; 193: 111127, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32446161

RESUMO

Antibacterial fibers have great potential in many applications, such as medical dressings, surgical sutures and masks, etc. owing to their good growth inhibition against bacteria. However, for the fabrication of antibacterial fibers, the traditional inorganic nanoparticles coating method shows the disadvantages of high cost, low stability and binding fastness. Herein, we develop a facile, scalable and cost-effective blend spinning strategy to fabricate the highly effective antibacterial zeolitic imidazolate framework-8@alginate (ZIF-8@SA) fibers through wet spinning of the mixture of ZIF-8 and SA. The fabricated ZIF-8@SA fibers show high antibacterial efficiency, good durability and high tensile strength. The antibacterial performance of ZIF-8@SA fibers is superior to the most reported inorganic nanoparticles modified fibers. The excellent antibacterial performance of ZIF-8@SA fibers is attributed to the reactive oxygen species from the ZIF-8 and the swelling of SA. This work may shed light on the antibacterial mechanisms of metal organic frameworks and pave the way for the development of high-performance, durable and highly effective antibacterial textiles.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Zeolitas/farmacologia , Alginatos/química , Antibacterianos/química , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície , Têxteis , Zeolitas/química
10.
ACS Omega ; 5(9): 4697-4704, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175517

RESUMO

Because of flexibility, compactness, weavability, and ergonomic design, yarn-shaped lithium-ion batteries (LIBs) have enormous potential applications in wearable electronics. Still, the yarn-shaped LIB with the ability to meet commercialization requirements has never been reported, owing to the current challenge in complex material synthesis technologies, expensive raw material costs, poor safety performance, and nonstandard manufacturing equipment. Herein, we propose a yarn-shaped LIB that meets the aforementioned requirements. With a highly conductive and flexible stainless-steel yarn acting as the current collector, the electrode active materials and the gel electrolyte, which are commercially available at low cost, are uniformly coated onto the stainless-steel yarn by a simple and facile dipping-drying method. Even at different deformation conditions (i.e., bending or knotting), the specific capacity of the yarn-shaped LIB (7 cm long, <2 mm in diameter) assembled from graphite and lithium iron phosphate electrodes is maintained >85%. After charged treatment, it can successfully power up an electronic watch and an electronic thermo-hygrometer. Thanks to the simple preparation process, low cost of raw materials, and good safety performance, this work can promote the commercialization of wearable energy storage devices.

11.
ACS Appl Mater Interfaces ; 12(6): 7477-7485, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961653

RESUMO

Conductive coatings show great promise for next-generation electromagnetic interference (EMI) shielding challenges on textile; however, their stringent requirements for electrical conductivity are difficult to meet by conventional approaches of increasing the loading and homogeneity of conductive nanofillers. Here, the axial alignment of carbon nanotubes (CNTs) on fibers that were obtained by spontaneous capillary-driven self-assembly is shown on commercial cotton fabrics, and its great potential for EMI shielding is demonstrated. The aligned CNTs structurally optimize the conductive network on fabrics and yield an 81-fold increase in electrical conductivity per unit of CNT, compared with the disordered CNT microstructure. The high-efficiency electrical conductivity allows a several-micron-thick coating on insulating fabrics to endow an EMI shielding effectiveness of 21.5 dB in the X band and 20.8 dB in the Ku band, which meets the standard shielding requirement in commercial applications. It is among the minimum reported thicknesses for conductive nanocomposite coatings to date. Moreover, the coated fabrics with aligned CNTs possess a desirable stability upon bending, scratching, stripping, and even washing, which is attributed to the dense CNT packing in the aligned microarchitecture. This work presents the anisotropic structure on large areas by self-assembly, offering new opportunities for next-generation portable and wearable electronic devices.

13.
ACS Appl Mater Interfaces ; 11(28): 25205-25217, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268652

RESUMO

Chemically converted graphene fiber-shaped supercapacitors (FSSCs) are highly promising flexible energy storage devices for wearable electronics. However, the ultralow specific capacitance and poor rate performance severely hamper their practical applications. They are caused by severe stacking of graphene nanosheets and tortuous ion diffusion path in graphene-based electrodes; thus, the ultralow utilization of graphene has been rarely carefully considered to date. Here, we address these issues by developing three-dimensional hierarchically porous graphene fiber with the incorporation of holey graphene for efficient utilization of graphene to achieve fast charge diffusion and good charge storage capability. Without deterioration in electrical but robust mechanical properties, the optimal graphene fiber shows ultrahigh specific capacitance of 220.1 F cm-3 at current density of 0.1 A cm-3 and boosted specific capacitance of 254.3 F cm-3 at 0.1 A cm-3 after nitrogen doping. Moreover, the nitrogen-doped 40% holey graphene hybrid fiber-assembled FSSC exhibits ultrahigh rate capability (96, 91, and 87% at current density of 0.5, 1.0, and 2.0 A cm-3, respectively, and 67% even at ultrahigh current density of 10.0 A cm-3) and excellent cycle stability (95.65% capacitance retention after 10 000 cycles). The contribution of three-dimensional interconnected hierarchically porous network to the enhanced electrochemical (EC) performance is semiquantitatively elucidated by Brunauer-Emmett-Teller and energy dispersive spectroscopy mapping. Our work gives insights into the importance of fully utilizing graphene and provides an efficient strategy for high EC performance in chemically converted graphene-based FSSCs.

14.
Materials (Basel) ; 12(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295844

RESUMO

Composite industry has long been seeking practical solutions to boost laminate through-thickness strengths and interlaminar shear strengths (ILSS), so that composite primary structures, such as stiffeners, can bear higher complex loadings and be more delamination resistant. Three dimensional (3D) woven fabrics were normally employed to render higher transverse and shear strengths, but the difficulty and high expense in producing such fabrics make it a hard choice. Based on a novel idea that the warp yarns that interlock layers of the weft yarns might provide adequate fiber crimps that would allow the interlaminar shear or radial stresses to be transferred and borne by the fibers, rather than by the relatively weaker matrix resin, thus improving the transverse strengths, this work provided a two point five dimensional (2.5D) approach as a practical solution, and demonstrated the superior transverse performances of an economical 2.5D shallow-bend woven fabric (2.5DSBW) epoxy composites, over the conventional two dimensional (2D) laminates and the costly 3D counterpart composites. This approach also produced a potential candidate to fabricate high performance stiffeners, as shown by the test results of L-beams which are common structural components of any stiffeners. This study also discovered that an alternative structure, namely a 2.5D shallow-straight woven fabric (2.5DSSW), did not show any advantages over the two control structures, which were a 2D plain weave (2DPW) and a 3D orthogonal woven fabric (3DOW) made out of the same carbon fibers. Composites of these structures in this study were conveniently fabricated using a vacuum-assisted resin infusion process (VARI). The L-beams were tested using a custom-made test fixture. The strain distribution and failure mode analysis of these beams were conducted using Digital Image Correlation (DIC) and X-ray Computed Tomography Scanning (CT). The results demonstrated that the structures containing Z-yarns or having high yarn crimps or waviness, such as in cases of 3DOW and 2.5DSBW, respectively, were shown to withstand high loadings and to resist delamination, favorable for the applications of high-performance structural composites.

15.
Nanomaterials (Basel) ; 9(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247985

RESUMO

The three-dimensional (3D) ultrafine fibrous scaffolds loaded with functional components can not only provide support to 3D tissue repair, but also deliver the components in-situ with small dosage and low fusion frequency. However, the conventional loading methods possess drawbacks such as low loading capacity or high burst release. In this research, an ultralow concentration phase separation (ULCPS) technique was developed to form 3D ultrafine gelatin fibers and, meanwhile, load an anti-inflammatory drug, diclofenac, with high capacities for the long-term delivery. The developed scaffolds could achieve a maximum drug loading capacity of 12 wt.% and a highest drug loading efficiency of 84% while maintaining their 3D ultrafine fibrous structure with high specific pore volumes from 227.9 to 237.19 cm3/mg. The initial release at the first hour could be reduced from 34.7% to 42.2%, and a sustained linear release profile was observed with a rate of about 1% per day in the following 30 days. The diclofenac loaded in and released from the ULCPS scaffolds could keep its therapeutic molecular structure. The cell viability has not been affected by the release of drug when the loading was less than 12 wt.%. The results proved the possibility to develop various 3D ultrafine fibrous scaffolds, which can supply functional components in-situ with a long-term.

16.
RSC Adv ; 9(17): 9401-9409, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35520719

RESUMO

Gradient vapor grown carbon fiber (VGCF) based shape memory polyurethane foam (VGCF@SMPUF) was fabricated by alternate dipping in a gradually diluted VGCF@SMPU/DMF solution and distilled water for shape memory driven microwave shielding. Shape memory performance for this VGCF@SMPUF was achieved by heat transfer of thermally conductive VGCF. Shielding effectiveness (SE) was adjusted through different degrees of angle recovery. A consistent shielding effect from either side indicated that electromagnetic reflection may take place at both the surface and inside of the non-homogeneous composite shield. For shape memory effect, hot compression made this VGCF@SMPUF achieve a faster recovery time and higher recovery ratio owing to improved thermal conductivity. Moreover, VGCF@SMPUF, which was bent to the positive side (PS) with a higher VGCF content, showed shorter recovery time and higher recovery ratio than that bent to the negative side (NS) with a lower VGCF content. We attribute this result to the relatively small mechanical compression strength of the negative side with the lower VGCF content at the bending point when expanding from the positive side. Furthermore, hot compression obviously improved the shielding effectiveness of the VGCF@SMPUF, mainly through a considerable increase of the electrical conductivity. The VGCF@SMPUF hot compressed to a thickness of 0.11 mm achieved a SE value of ∼30 dB, corresponding to a shielding efficiency of ∼99.9%.

17.
Materials (Basel) ; 11(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702575

RESUMO

Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

18.
ACS Appl Mater Interfaces ; 10(16): 13652-13659, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29601179

RESUMO

Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm2) in comparison to the as-prepared GFSC. The energy density reaches 0.80 µW h/cm2 in polyvinyl alcohol/H2SO4 gel electrolyte and 18.12 µW h/cm2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

19.
Molecules ; 23(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494527

RESUMO

Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.


Assuntos
Carbono/química , Fenômenos Mecânicos , Polímeros/química , Estireno/química , Fibra de Carbono , Teste de Materiais , Propriedades de Superfície , Temperatura
20.
Polymers (Basel) ; 10(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30960786

RESUMO

Wearable antennas play an important role in transmitting signals wirelessly in body-worn systems, helping body-worn applications to achieve real-time monitoring and improving the working efficiency as well as the life quality of the users. Over conventional antenna types, ultra wideband (UWB) antennas have advantages of very large operating bandwidth, low power consumption, and high data transmission speed, therefore, they become of great interest for body-worn applications. One of the strategies for making the antenna comfortable to wear is replacing the conventional rigid printed circuit board with textile materials in the manufacturing process. In this study, a novel three-dimensional woven fabric integrated UWB antenna was proposed and fabricated with pure textile materials. The antenna electromagnetic properties were simulated and measured and its properties under bending were investigated. The antenna operated in a wide bandwidth from 2.7 to 13 GHz with the proper radiation pattern and gain value. At the same time, the antenna performance under bending varied in a reasonable range indicating that the antenna is prospectively applied on the curved surfaces of the human body. Additionally, the current distribution of the antenna showed that different conductive parts had different current densities indicating the uniqueness of the three-dimensional textile-based antenna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...