Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Med Chem ; 67(8): 6687-6704, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574002

RESUMO

In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.


Assuntos
Hiperlipidemias , Humanos , Animais , Camundongos , Hiperlipidemias/tratamento farmacológico , Células Hep G2 , Relação Estrutura-Atividade , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Masculino , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacocinética , Descoberta de Drogas , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Desenho de Fármacos
2.
J Med Chem ; 67(6): 4603-4623, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38500250

RESUMO

Osteoarthritis is the most common joint disorder. However, there are no disease-modifying drugs approved for OA treatment. CDC2-like kinase 2 (CLK2) could modulate Wnt signaling via alternative splicing of Wnt target genes and further affect bone differentiation, chondrocyte function, and inflammation, making CLK2 an attractive target for OA therapy. In this study, we designed and synthesized a series of highly potent CLK2 inhibitors based on Indazole 1. Among them, compound LQ23 showed more elevated inhibitory activity against CLK2 than the lead compound (IC50, 1.4 nM) with high CLK2/CLK3 selectivity (>70-fold). Furthermore, LQ23 showed outstanding antiosteoarthritis effects in vitro and in vivo, with the roles specific in decreased inflammatory cytokines, downregulated cartilage degradative enzymes, and increased joint cartilage via suppressing CLK2/Wnt signaling pathway. Overall, these data support LQ23 as a potential candidate for intra-articular knee OA therapy, leveraging its unique mechanism of action for targeted treatment.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Inflamação/metabolismo , Condrócitos/metabolismo , Via de Sinalização Wnt
3.
J Med Chem ; 67(2): 988-1007, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38217503

RESUMO

Alanine-serine-cysteine transporter 2 (ASCT2) is up-regulated in lung cancers, and inhibiting it could potentially lead to nutrient deprivation, making it a viable strategy for cancer treatment. In this study, we present a series of ASCT2 inhibitors based on aminobutanoic acids, which exhibit potent inhibitory activity. Two compounds, 20k and 25e, were identified as novel and potent ASCT2 inhibitors, with IC50 values at the micromolar level in both A549 and HEK293 cells, effectively blocking glutamine (Gln) uptake. Additionally, these compounds regulated amino acid metabolism, suppressed mTOR signaling, inhibited non-small-cell lung cancer (NSCLC) growth, and induced apoptosis. In vivo, experiments showed that 20k and 25e suppressed tumor growth in an A549 xenograft model, with tumor growth inhibition (TGI) values of 65 and 70% at 25 mg/kg, respectively, while V9302 only achieved a TGI value of 29%. Furthermore, both compounds demonstrated promising therapeutic potential in patient-derived organoids. Therefore, these ASCT2 inhibitors based on aminobutanoic acids are promising therapeutic agents for treating NSCLC by targeting cancer Gln metabolism.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Cisteína , Serina , Alanina , Células HEK293 , Glutamina , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem Celular Tumoral
4.
J Med Chem ; 66(22): 15340-15361, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870244

RESUMO

Effectiveness of epidermal growth factor receptor (EGFR) inhibitors, including Osimertinib, for treating non-small-cell lung cancer (NSCLC) is limited due to the continuous emergence of drug resistance. Hence, it is urgent to develop new therapeutic approaches. CDK9, a key regulator of RNA transcription, has emerged as a promising target for the development of antitumor drugs due to its crucial role in modulating the levels of antiapoptotic protein Mcl-1. Herein, we present the synthesis, optimization, and evaluation of selective CDK9 inhibitors with a macrocyclic scaffold that effectively suppresses the growth of NSCLC cells. Notably, compound Z11, a potent CDK9 inhibitor (IC50 = 3.20 nM) with good kinase selectivity, significantly inhibits cell proliferation and colony formation and induces apoptosis in Osimertinib-resistant H1975 cells. Furthermore, Z11 demonstrates a significant suppression of tumor growth in six patient-derived organoids, including three organoids resistant to Osimertinib. Overall, Z11 served as a promising macrocycle-based CDK9 inhibitor for treating Osimertinib-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos Macrocíclicos , Inibidores de Proteínas Quinases , Humanos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/uso terapêutico
5.
Eur J Med Chem ; 260: 115774, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672930

RESUMO

CDK9 plays a vital role in regulating RNA transcription and significantly impacts the expression of short-lived proteins such as Mcl-1 and c-Myc. Thus, targeting CDK9 holds great promise for the development of antitumor drugs. Natural flavonoid derivatives have recently gained considerable attention in the field of antitumor drug research due to their broad bioactivity and low toxicity. In this study, the PROTAC strategy was used to perform structural modifications of the flavonoid derivative LWT-111 to design a series of flavonoid-based CDK9 degraders. Notably, compound CP-07 emerged as a potent CDK9 degrader, effectively suppressing the proliferation and colony formation of 22RV1 cells by downregulating Mcl-1 and c-Myc. Moreover, CP-07 exhibited significant tumor growth inhibition with a TGI of 75.1% when administered at a dose of 20 mg/kg in the 22RV1 xenograft tumor model. These findings demonstrated the potential of CP-07 as a powerful flavonoid-based CDK9 degrader for prostate cancer therapy.


Assuntos
Neoplasias da Próstata , Masculino , Animais , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias da Próstata/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides/farmacologia , Xenoenxertos , Quinase 9 Dependente de Ciclina
6.
Drug Metab Dispos ; 51(12): 1628-1641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684055

RESUMO

The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Transdução de Sinais , Citratos/metabolismo , Ácido Cítrico/metabolismo
7.
J Med Chem ; 66(14): 9537-9560, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37409679

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is correlated with tumor development and chemotherapy resistance. The catalytic activity of the enzyme has been recognized as one of the important factors in inducing anthracycline (ANT) resistance in cancer cells. Inhibition of AKR1C3 activity may provide a promising approach to restore the chemosensitivity of ANT-resistant cancers. Herein, a series of biaryl-containing AKR1C3 inhibitors has been developed. The best analogue S07-1066 selectively blocked AKR1C3-mediated reduction of doxorubicin (DOX) in MCF-7 transfected cell models. Furthermore, co-treatment of S07-1066 significantly synergized DOX cytotoxicity and reversed the DOX resistance in MCF-7 cells overexpressing AKR1C3. The potential synergism of S07-1066 over DOX cytotoxicity was demonstrated in vitro and in vivo. Our findings indicate that inhibition of AKR1C3 potentially enhances the therapeutic efficacy of ANTs and even suggests that AKR1C3 inhibitors may serve as effective adjuvants to overcome AKR1C3-mediated chemotherapy resistance in cancer treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Doxorrubicina/farmacologia , Antraciclinas , Antibióticos Antineoplásicos/farmacologia , Células MCF-7 , 3-Hidroxiesteroide Desidrogenases/farmacologia , Hidroxiprostaglandina Desidrogenases , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia
8.
Adv Drug Deliv Rev ; 200: 115024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516411

RESUMO

The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.


Assuntos
Redes e Vias Metabólicas , Organelas , Humanos
9.
J Med Chem ; 66(14): 9229-9250, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37428122

RESUMO

Lipid metabolism disorder is closely related to metabolic diseases, inflammation, and cancer. The concentration of citrate in the cytosol has a significant impact on lipid synthesis. The expression of citrate transporters (SLC13A5 and SLC25A1) and metabolic enzymes (ACLY) proves to be substantially raised in various diseases related to disorders of lipid metabolism, such as hyperlipemia, nonalcoholic fatty liver disease, and prostate cancer. Targeting key proteins in the citrate transport and metabolic pathways is considered an effective strategy for treating various metabolic diseases. However, there is currently only one ACLY inhibitor approved for marketing, and no SLC13A5 inhibitor has entered clinical research. Further development of drugs targeting citrate transport and metabolism is needed for the treatment of metabolic diseases. This perspective summarizes the biological role, therapeutic potential, and research progress of citrate transport and metabolism and then discusses the achievements and prospects of modulators targeting citrate transport and metabolism for therapeutic applications.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Transporte de Íons , Ácido Cítrico , Citratos , Descoberta de Drogas
10.
Eur J Drug Metab Pharmacokinet ; 48(4): 363-376, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344636

RESUMO

BACKGROUND AND OBJECTIVES: The oral bioavailability of withangulatin A (WA) is low and may undergo first-pass metabolism because of the presence of two esters bonds. This study aimed to identify the hydrolysis behavior and mechanism of WA, thus enriching its structure-pharmacokinetic relationship. METHODS: The in vivo pharmacokinetic studies of WA in rats were first investigated, followed by in vitro assays including metabolic stability, phenotyping identification and metabolic kinetics assays. After screening out the responsible enzymes with higher catalytic capacity, molecular docking study was performed to demonstrate the interaction mode between WA and metabolic enzymes. Then, metabolites in human serum albumin (HSA) were identified by LC-TOF-MS/MS. RESULTS: In rats, the oral bioavailability of WA was only 2.83%. In vitro, WA was hydrolyzed in both rat and human plasma and could not be inhibited by selective esterase inhibitors. Physiologic concentration of HSA not recombinant human carboxylesterases (rhCES) could significantly hydrolyze WA, and it had a similar hydrolytic capacity with human plasma to WA. Furthermore, WA could stably bind to HSA by forming hydrogen bonds with Lys199 and Arg410, accompanied by the metabolic reaction of the lactone ring opening. CONCLUSION: The study showed that WA underwent obvious hydrolysis in rat and human plasma, which implied a strong first-pass effect. Serum albumin rather than common esterases primarily contributed to the hydrolytic metabolism of WA in plasma.


Assuntos
Esterases , Albumina Sérica , Ratos , Humanos , Animais , Esterases/metabolismo , Hidrólise , Albumina Sérica/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Albumina Sérica Humana
11.
Chem Sci ; 14(15): 4174-4182, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063808

RESUMO

Stimulator of interferon genes (STING) agonism presents a powerful weapon for cancer immunotherapy. This study reports a novel dimerized STING agonist diBSP01, which exhibited promising STING binding and activation properties in vitro, based on the benzo[b]selenophene scaffold. Meanwhile, shielding the pharmacophores of diBSP01 with photoremovable protecting groups (PPGs) resulted in the generation of the first photoactivatable STING agonist, caged-diBSP01, that exerted no biological potency in the absence of light stimulation while regaining its STING agonistic activity after 400 nm irradiation. Optically controlled in vivo anticancer activity was also proven with caged-diBSP01 in a zebrafish xenograft model. Our study provides insights into developing novel STING agonists for cancer treatment and a solution for precise STING activation to avoid the on-target systemic inflammatory response responsible for normal cell damage caused by systemic STING agonism.

12.
J Med Chem ; 65(13): 8914-8932, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786929

RESUMO

Ubiquitin-specific protease 8 (USP8), belonging to the deubiquitinase family, has been implicated to be closely related to the occurrence of many malignant tumors, but only a few USP8-targeting inhibitors have been reported to date. In this study, we present virtual screening to discover novel hit candidates that inhibit the catalytic activity of USP8. Exploration of the structure-activity relationship led to the identification of compound DC-U4106, which binds to USP8 with a KD value of 4.7 µM and is selective over USP2 and USP7. Western blotting and immunoprecipitation showed that DC-U4106 could target the ubiquitin pathway and facilitate the degradation of ERα. In a xenograft tumor model, DC-U4106 also significantly inhibited tumor growth with minimal toxicity. Overall, our findings suggest that DC-U4106 is a promising drug candidate and targeting the USP8-ERα complex could be a new approach to treat ER-positive or drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Feminino , Humanos , Ubiquitina/metabolismo , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina/metabolismo
13.
Eur J Med Chem ; 239: 114551, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35749986

RESUMO

Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.


Assuntos
Neoplasias Hematológicas , Doenças do Sistema Imunitário , Inibidores de Janus Quinases , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Janus Quinase 2/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Transdução de Sinais
14.
Eur J Pharm Sci ; 175: 106211, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605911

RESUMO

FZJ-003 is a selective Janus kinase 1 (JAK1) inhibitor with structural modification of filgotinib for rheumatoid arthritis (RA) treatment. In this study, a series of in vivo and in vitro experiments were conducted to investigate the specific contribution of the intestine and liver to the disposition of FZJ-003 compared with filgotinib. Results showed that FZJ-003 exhibited over 2-fold higher systemic exposure and lower clearance than those of filgotinib, after intravenous or intragastric administration at the equivalent mole dose level to conscious rats. In anesthetized rats treated with different dosing routes, FZJ-003 exhibited higher intestinal bioavailability (Fa·Fg, 98.47 vs 34.54%) but lower hepatic bioavailability (Fh, 61.45 vs 92.07%). Permeability test in Caco-2 cells indicated that FZJ-003 was probably transported by passive diffusion (efflux ratio 1.37 < 2, indicating the approximately equivalent Papp values in two directions) with a little higher permeability (Papp,AP-to-BL, 1.42 × 10-6vs 1.01 × 10-6 cm·s-1, FZJ-003 vs filgotinib). Metabolic studies in pre-systemic incubation systems showed that FZJ-003 experienced more NADPH-dependent metabolism, especially in hepatic microsomes fractions. Unlike filgotinib, there was no obvious amide-hydrolyzed metabolite of FZJ-003 detected throughout the pre-systemic metabolic sites. Collectively, these data suggest that the higher systemic exposure of FZJ-003 than filgotinib is mainly attributed to the higher intestinal bioavailability including bypassing the amide hydrolysis and possible efflux by intestinal epithelial cells, which strongly support the structural design purpose in terms of pharmacokinetics.


Assuntos
Inibidores de Janus Quinases , Microssomos Hepáticos , Amidas , Animais , Células CACO-2 , Humanos , Absorção Intestinal , Intestinos , Janus Quinase 1/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Piridinas , Ratos , Triazóis
15.
Biomed Pharmacother ; 151: 113132, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623174

RESUMO

Corydalis saxicola Bunting (Yanhuanglian), distributed in Southwest China, is mainly used for treatment of hepatitis, oral mucosal erosion, conjunctivitis, dysentery, acute abdominal pain and hemorrhoids in the folk. Corydalis saxicola Bunting Total Alkaloids (CSBTA) are the active ingredients extracted from the root of C. saxicola bunting. Non-alcoholic steatohepatitis (NASH) is the hinge between steatosis and cirrhosis in the spectrum of Non-alcoholic fatty liver disease (NAFLD), which has become one of the most common chronic liver diseases in the world. CSBTA can reduce tumors and brain diseases through anti-inflammatory and antioxidant pathways. Our study was designed to clarify the effects of CSBTA on the HFHC (High fat and high carbohydrate drinking) diet induced mice. In our research, A HFHC diet induced NASH mice model was applied to investigate the effects of CSBTA in vivo and obeticholic acid (OA) was set as positive control. Moreover, the underlying mechanisms were explored by palmitic acid (PA) and lipopolysaccharide (LPS) stimulated HepG2 cells in vitro. The in vivo study illustrated that CSBTA could alleviate mice away from the onset of NASH, and reduce intrahepatocellular lipid accumulation and hepatocyte inflammation under high fat condition. Further in vitro analysis confirmed that CSBTA attenuated inflammation and hepatic lipid accumulation by improving hepatic PI3K/Akt and suppressing hepatic TLR4/NF-κB pathways. In summary, this study demonstrated that CSBTA might be a promising compound for the treatment of NAFLD.


Assuntos
Alcaloides , Corydalis , Hepatopatia Gordurosa não Alcoólica , Alcaloides/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Corydalis/metabolismo , Dieta , Inflamação/metabolismo , Lipídeos/farmacologia , Fígado , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Eur J Med Chem ; 236: 114337, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35428013

RESUMO

Glutaminase 1 (GLS1) is overexpressed in multiple types of malignant tumors and is viewed as a promising target in cancer therapy. Thus, the discovery for small-molecule GLS1 inhibitors is being urgent. Based on our previous study of C147, a potent GLS1 allosteric inhibitor yet with a limited metabolic stability, a structure-based optimization was carried out, with a series of novel GLS1 allosteric inhibitors rationally designed, synthesized and biologically evaluated. Such endeavor has culminated in the identification of 41e, a promising GLS1 allosteric inhibitor with 4-piperidinamine linker and aromatic heterocycles. 41e displayed robust GLS1 binding affinity, superior liver microsome metabolic stability, and moderate anti-tumor activity (TGI: 47.5%) in HCT116 xenograft model with no considerable toxicity in vivo. The mechanism underlying the anti-proliferative effect of 41e on HCT116 cells was studied, revealing that the compound blocked the glutamine metabolism, induced the production of ROS, and triggered apoptosis. These findings merit further investigation of 41e as a targeted cancer therapeutic.


Assuntos
Glutaminase , Neoplasias , Animais , Apoptose , Glutaminase/antagonistas & inibidores , Células HCT116 , Humanos , Neoplasias/tratamento farmacológico
18.
J Med Chem ; 65(1): 857-875, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34958208

RESUMO

Nowadays, the simultaneous inhibition of two or more pathways plays an increasingly important role in cancer treatment due to the complex and diverse pathogenesis of cancer, and the combination of the cyclin-dependent kinase 6 (CDK6) inhibitor and PIM1 inhibitor was found to generate synergistic effects in acute myeloid leukemia (AML) treatment. Therefore, we discovered a novel lead 1 targeting CDK6/PIM1 via pharmacophore-based and structure-based virtual screening, synthesized five different series of new derivates, and obtained a potent and balanced dual CDK6/PIM1 inhibitor 51, which showed high kinase selectivity. Meanwhile, 51 displayed an excellent safety profile and great pharmacokinetic properties. Furthermore, 51 displayed stronger potency in reducing the burden of AML than palbociclib and SMI-4a in vivo. In summary, we offered a new direction for AML treatment and provided a great lead compound for AML preclinical studies.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Especificidade por Substrato
19.
J Agric Food Chem ; 69(31): 8714-8725, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323067

RESUMO

Upregulated de novo lipogenesis (DNL) plays a pivotal role in the progress of the nonalcoholic fatty liver disease (NAFLD). Cytoplasmic citrate flux, mediated by plasma membrane citrate transporter (SLC13A5), mitochondrial citrate carrier (SLC25A1), and ATP-dependent citrate lyase (ACLY), determines the central carbon source for acetyl-CoA required in DNL. Curcumin, a widely accepted dietary polyphenol, can attenuate lipid accumulation in NAFLD. Here, we first investigated the lipid-lowering effect of curcumin against NAFLD in oleic and palmitic acid (OPA)-induced primary mouse hepatocytes and high-fat plus high-fructose diet (HFHFD)-induced mice. Curcumin profoundly attenuated OPA- or HFHFD-induced hyperlipidemia and aberrant hepatic lipid deposition via modulating the expression and function of SLC13A5 and ACLY. The possible mechanism of curcumin on the citrate pathway was investigated using HepG2 cells, HEK293T cells transfected with human SLC13A5, and recombinant human ACLY. In OPA-stimulated HepG2 cells, curcumin rectified the dysregulated expression of SLC13A5/ACLY possibly via the AMPK-mTOR signaling pathway. Besides, curcumin also functionally inhibited both citrate transport and metabolism mediated by SLC13A5 and ACLY, respectively. These findings confirm that curcumin improves the lipid accumulation in the liver by blocking citrate disposition and hence may be used to prevent NAFLD.


Assuntos
Curcumina , Hepatopatia Gordurosa não Alcoólica , Transportadores de Ânions Orgânicos , Simportadores , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Ácido Cítrico , Curcumina/farmacologia , Transportadores de Ácidos Dicarboxílicos , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Camundongos , Proteínas Mitocondriais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Simportadores/metabolismo
20.
Chin Med ; 16(1): 58, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281577

RESUMO

BACKGROUND: Corydalis saxicola Bunting, affiliated with the Papaveraceae Juss., has been proven to work well in anti-inflammation, hemostasis, and analgesia. This study was designed to observe the effect and potential mechanism of Corydalis saxicola Bunting total alkaloids (CSBTA) on paclitaxel-induced peripheral neuropathy (PIPN). MATERIALS AND METHODS: Rats were injected 2 mg/kg paclitaxel 4 times and administrated with 30 or 120 mg/kg CSBTA. Mechanical and thermal allodynia and hyperalgesia were tested. After 40 days, serum was collected to detect PGE2, TNF-α, and IL-1ß by ELISA. The L4-L6 segment spinal cord, DRG, and plantar skin were harvested, and Western-blot or RT-qPCR analyzed protein and gene levels of pro-inflammatory cytokines, p38 MAPK, PKCε, and TRPV1. The PIPN cell model was established with paclitaxel (300 nM, 5 d) in primary DRG neurons. We examined the effect of CSBTA (25 µg/ml or 50 µg/ml) by measuring the mRNA levels in PGE2, TNF-α and CGRP, and the protein expression on the PKCε/p38 MAPK/TRPV1 signaling pathway in the PIPN cell model. RESULTS: The results showed that CSBTA effectively ameliorated allodynia and hyperalgesia, and regulated cytokines' contents (PGE2, TNF-α, and IL-1ß) and neuropeptides (CGRP and SP) in different tissues in vivo. In addition, CSBTA significantly decreased cytokine gene levels of DRG neurons (PGE2, TNF-α, and CGRP) and the protein expressions of PKCε/p38 MAPK/TRPV1 signaling pathway in vivo and in vitro. CONCLUSION: Therefore, CSBTA has a perspective therapeutic effect on the treatment of paclitaxel-induced peripheral neuropathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...