Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 761-769, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127497

RESUMO

Magnetic skyrmions are topologically protected swirling spin textures with great potential for future spintronic applications. The ability to induce skyrmion motion using mechanical strain not only stimulates the exploration of exotic physics but also affords the opportunity to develop energy-efficient spintronic devices. However, the experimental realization of strain-driven skyrmion motion remains a formidable challenge. Herein, we demonstrate that the inhomogeneous uniaxial compressive strain can induce the movement of isolated skyrmions from regions of high strain to regions of low strain at room temperature, which was directly observed using an in situ Lorentz transmission electron microscope with a specially designed nanoindentation holder. We discover that the uniaxial compressive strain can transform skyrmions into a single domain with in-plane magnetization, resulting in the coexistence of skyrmions with a single domain along the direction of the strain gradient. Through comprehensive micromagnetic simulations, we reveal that the repulsive interactions between skyrmions and the single domain serve as the driving force behind the skyrmion motion. The precise control of skyrmion motion through strain provides exciting opportunities for designing advanced spintronic devices that leverage the intricate interplay between strain and magnetism.

2.
Adv Mater ; 33(35): e2101131, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302387

RESUMO

Chiral magnets endowed with topological spin textures are expected to have promising applications in next-generation magnetic memories. In contrast to the well-studied 2D or 3D magnetic skyrmions, the authors report the discovery of 1D nontrivial magnetic solitons in a transition metal dichalcogenide 2H-TaS2 via precise intercalation of Cr elements. In the synthetic Cr1/3 TaS2 (CTS) single crystal, the coupling of the strong spin-orbit interaction from TaS2 and the chiral arrangement of the magnetic Cr ions evoke a robust Dzyaloshinskii-Moriya interaction. A magnetic helix having a short spatial period of ≈25 nm is observed in CTS via Lorentz transmission electron microscopy. In a magnetic field perpendicular to the helical axis, the helical spin structure transforms into a chiral soliton lattice (CSL) with the spin structure evolution being consistent with the chiral sine-Gordon theory, which opens promising perspectives for the application of CSL to fast-speed nonvolatile magnetic memories. This work introduces a new paradigm to soliton physics and provides an effective strategy for seeking novel 2D magnets.

3.
ACS Nano ; 15(3): 5086-5095, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33606942

RESUMO

The Berry phase, which reveals the intimate geometrical structure underlying quantum mechanics, plays a central role in the anomalous Hall effect. In this work, we observed a sign change of Berry curvatures at the interface between the ferromagnet SrRuO3 (SRO) layer and the SrIrO3 (SIO) layer with strong spin-orbit coupling. The negative Berry curvature at the interface, induced by the strongly spin-orbit-coupled Ir 5d bands near the Fermi level, makes the SRO/SIO interface different from the SRO layer that has a positive Berry curvature. These opposite Berry curvatures led to two anomalous Hall effect (AHE) channels with opposite signs at the SRO/SIO interface and in the SRO layer, respectively, resulting in a hump-like feature in the Hall resistivity loop. This observation offers a straightforward explanation of the hump-like feature that is usually associated with the chiral magnetic structure or magnetic skyrmions. Hence, this study provides evidence to oppose the widely accepted claim that magnetic skyrmions induce the hump-like feature.

4.
Nano Lett ; 21(4): 1672-1678, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570963

RESUMO

van der Waals (vdW) magnetic materials provide an ideal platform to study low-dimensional magnetism. However, observations of magnetic characteristics of these layered materials truly distinguishing them from conventional magnetic thin film systems have been mostly lacking. In an effort to investigate magnetic properties unique to vdW magnetic materials, we examine the exchange bias effect, a magnetic phenomenon emerging at the ferromagnetic-antiferromagnetic interface. Exchange bias is observed in the naturally oxidized vdW ferromagnet Fe3GeTe2, owing to an antiferromagnetic ordering in the surface oxide layer. Interestingly, the magnitude and thickness dependence of the effect is unlike those expected in typical thin-film systems. We propose a possible mechanism for this behavior, based on the weak interlayer magnetic coupling inherent to vdW magnets, demonstrating the distinct properties of these materials. Furthermore, the robust and sizable exchange bias for vdW magnets persisting up to relatively high temperatures presents a significant advance for realizing practical two-dimensional spintronics.

5.
Nat Commun ; 11(1): 2836, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504063

RESUMO

Magnetoelectric coupling at room temperature in multiferroic materials, such as BiFeO3, is one of the leading candidates to develop low-power spintronics and emerging memory technologies. Although extensive research activity has been devoted recently to exploring the physical properties, especially focusing on ferroelectricity and antiferromagnetism in chemically modified BiFeO3, a concrete understanding of the magnetoelectric coupling is yet to be fulfilled. We have discovered that La substitutions at the Bi-site lead to a progressive increase in the degeneracy of the potential energy landscape of the BiFeO3 system exemplified by a rotation of the polar axis away from the 〈111〉pc towards the 〈112〉pc discretion. This is accompanied by corresponding rotation of the antiferromagnetic axis as well, thus maintaining the right-handed vectorial relationship between ferroelectric polarization, antiferromagnetic vector and the Dzyaloshinskii-Moriya vector. As a consequence, La-BiFeO3 films exhibit a magnetoelectric coupling that is distinctly different from the undoped BiFeO3 films.

6.
Adv Mater ; 32(28): e2001943, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468701

RESUMO

Spintronic elements based on spin transfer torque have emerged with potential for on-chip memory, but they suffer from large energy dissipation due to the large current densities required. In contrast, an electric-field-driven magneto-electric storage element can operate with capacitive displacement charge and potentially reach 1-10 µJ cm-2 switching operation. Here, magneto-electric switching of a magnetoresistive element is shown, operating at or below 200 mV, with a pathway to get down to 100 mV. A combination of phase detuning is utilized via isovalent La substitution and thickness scaling in multiferroic BiFeO3 to scale the switching energy density to ≈10 µJ cm-2 . This work provides a template to achieve attojoule-class nonvolatile memories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...