Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400558, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570734

RESUMO

An electrochemical capacitor configuration extends its operational potential window by leveraging diverse charge storage mechanisms on the positive and negative electrodes. Beyond harnessing capacitive, pseudocapacitive, or Faradaic energy storage mechanisms and enhancing electrochemical performance at high rates, achieving a balance of stored charge across electrodes poses a significant challenge over a wide range of charge-discharge currents or sweep rates. Consequently, fabricating hybrid and asymmetric supercapacitors demands precise electrochemical evaluations of electrode materials and the development of a reliable methodology. This work provides an overview of fundamental aspects related to charge-storage mechanisms and electrochemical methods, aiming to discern the contribution of each process. Subsequently, the electrochemical properties, including the working potential windows, rate capability profiles, and stabilities, of various families of electrode materials are explored. It is then demonstrated, how charge balancing between electrodes falters across a broad range of charge-discharge currents or sweep rates. Finally, a methodology for achieving charge balance in hybrid and asymmetric supercapacitors is proposed, outlining multiple conditions dependent on loaded mass and charge-discharge current. Two step-by-step tutorials and model examples for applying this methodology are also provided. The proposed methodology is anticipated to stimulate continued dialogue among researchers, fostering advancements in achieving stable and high-performance supercapacitor devices.

2.
Small ; : e2400724, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639018

RESUMO

The lack of intrinsic active sites for photocatalytic CO2 reduction reaction (CO2RR) and fast recombination rate of charge carriers are the main obstacles to achieving high photocatalytic activity. In this work, a novel phosphorus and boron binary-doped graphitic carbon nitride, highly porous material that exhibits powerful photocatalytic CO2 reduction activity, specifically toward selective CO generation, is disclosed. The coexistence of Lewis-acidic and Lewis-basic sites plays a key role in tuning the electronic structure, promoting charge distribution, extending light-harvesting ability, and promoting dissociation of excitons into active carriers. Porosity and dual dopants create local chemical environments that activate the pyridinic nitrogen atom between the phosphorus and boron atoms on the exposed surface, enabling it to function as an active site for CO2RR. The P-N-B triad is found to lower the activation barrier for reduction of CO2 by stabilizing the COOH reaction intermediate and altering the rate-determining step. As a result, CO yield increased to 22.45 µmol g-1 h-1 under visible light irradiation, which is ≈12 times larger than that of pristine graphitic carbon nitride. This study provides insights into the mechanism of charge carrier dynamics and active site determination, contributing to the understanding of the photocatalytic CO2RR mechanism.

3.
Nanoscale Horiz ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456521

RESUMO

Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.

5.
Nat Commun ; 13(1): 1256, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273184

RESUMO

Ascertaining the function of in-plane intrinsic defects and edge atoms is necessary for developing efficient low-dimensional photocatalysts. We report the wireless photocatalytic CO2 reduction to CH4 over reconstructed edge atoms of monolayer 2H-WSe2 artificial leaves. Our first-principles calculations demonstrate that reconstructed and imperfect edge configurations enable CO2 binding to form linear and bent molecules. Experimental results show that the solar-to-fuel quantum efficiency is a reciprocal function of the flake size. It also indicates that the consumed electron rate per edge atom is two orders of magnitude larger than the in-plane intrinsic defects. Further, nanoscale redox mapping at the monolayer WSe2-liquid interface confirms that the edge is the most preferred region for charge transfer. Our results pave the way for designing a new class of monolayer transition metal dichalcogenides with reconstructed edges as a non-precious co-catalyst for wired or wireless hydrogen evolution or CO2 reduction reactions.

6.
Inorg Chem ; 61(10): 4442-4452, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35239342

RESUMO

We report the phase evolution and thermoelectric properties of a series of Co(Ge0.5Te0.5)3-xSbx (x = 0-0.20) compositions synthesized by mechanical alloying. Pristine ternary Co(Ge0.5Te0.5)3 skutterudite crystallizes in the rhombohedral symmetry (R3̅), and Sb doping induces a structural transition to the cubic phase (ideal skutterudite, Im3̅). The Sb substitution increases the carrier concentration while maintaining a high thermopower even at higher doping levels owing to an increased effective mass. The exceptional electronic properties exhibited by Co(Ge0.5Te0.5)3 upon doping are attributed to the carrier transport from both the primary and secondary conduction bands, as shown by theoretical calculations. The enhanced electrical conductivity and high thermopower increase the power factor by more than 20 times. Because the dominant phonon propagation modes in binary skutterudites are associated with the vibrations of pnictogen rings, twisting the latter through the isoelectronic replacement of Sb4 rings with Ge2Te2 ones, as done in this study, can effectively reduce the thermal conductivity. This leads to an increase in the dimensionless figure-of-merit (zT) by a factor of 30, reaching 0.65 at 723 K for Co(Ge0.5Te0.5)2.9Sb0.1.

7.
ChemSusChem ; 12(17): 4064-4073, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31267672

RESUMO

Supercapacitors store charge by ion adsorption or fast redox reactions on the surface of porous materials. One of the bottlenecks in this field is the development of biocompatible and high-rate supercapacitor devices by scalable fabrication processes. Herein, a Ti-rich anatase TiO2 material that addresses the above-mentioned challenges is reported. Tubular nanolettuces were fabricated by a cost-effective and fast anodization process of Ti foil. They attained a large potential window of 2.5 V in a neutral electrolyte owing to the high activation energy for water splitting of the (1 0 1) facet. Aqueous and all-solid-state devices showed diffusion time constants of 46 and 1700 ms, as well as high maximum energy (power) densities of 0.844 (0.858) and 0.338 µWh cm-2 (0.925 mW cm-2 ), respectively. The all-solid-state device showed ultrahigh stability of 96 % in capacitance retention after 20 000 galvanostatic charge/discharge cycles. These results open an avenue to fabricate biochemically inert supercapacitor devices.

8.
ACS Appl Mater Interfaces ; 7(21): 11172-9, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25970498

RESUMO

In this research, facile and low cost synthesis methods, electrodeposition at constant current density and anodization at various applied voltages, were used to produce hierarchical cobalt oxide/hydroxide nanoflakes on top of porous anodized cobalt layer. The maximum electrochemical capacitance of 601 mF cm(-2) at scan rate of 2 mV s(-1) was achieved for 30 V optimized anodization applied voltage with high stability. Morphology and surface chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The size, thickness, and density of nanoflakes, as well as length of the porous anodized Co layer were measured about 460±45 nm, 52±5 nm, 22±3 µm(-2), and 3.4±0.3 µm for the optimized anodization voltage, respectively. Moreover, the effect of anodization voltage on the resulting supercapacitance was modeled by using the Butler-Volmer formalism. The behavior of the modeled capacitance in different anodization voltages was in good agreement with the measured experimental data, and it was found that the role and contribution of the porous morphology was more decisive than structure of nanoflakes in the supercapacitance application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...