Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006096

RESUMO

Isosorbide can be used as a third monomer in the synthesis of aliphatic polyesters, and its V-shaped bridging ring structure can effectively improve the rigidity of the copolyester molecular chain. In this work, a series of degradable polyester materials were prepared by modifying polybutylene succinate and using isosorbide as the third monomer. The degradation tests in this paper were implemented through the hydrolysis of copolyesters in distilled water, degradation in natural water and degradation tests in simulated natural environments. The results showed that PBS and its copolyesters can degrade under natural conditions, and the introduction of isosorbide can accelerate the degradation of copolyesters, which could effectively reduce pollutants in nature.

2.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688191

RESUMO

Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO4 hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VOx/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VOx 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g-1 at 1 A·g-1 current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg-1 at a power density of 600 W·Kg-1. Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping.

3.
Molecules ; 28(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630354

RESUMO

The development of low-cost and high-performance bifunctional electrocatalysts for overall water splitting is still challenging. Herein, we employed a facile electrodeposition method to prepare bifunctional cobalt phosphide for overall water splitting. The needle-like cobalt phosphide (Co-P-1) nanoarray is uniformly distributed on nickel foam. Co-P-1 exhibits excellent electrocatalytic activity for hydrogen evolution reaction (HER, 85 mV at 10 mA/cm2, 60 mV/dec) and oxygen evolution reaction (OER, 294 mV at 50 mA/cm2, 60 mV/dec). The cell-voltage of 1.60 V is found to achieve the current density of 10 mA/cm2 for overall water splitting in the two-electrode system, comparable to that of previously reported Pt/C/NF||RuO2/NF. The excellent electrocatalytic performance can be attributed to the needle-like structure with more active sites, accelerated charge transfer and evolved bubbles' release. This work can provide new approach to the development of a bifunctional electrocatalyst for overall water splitting.

4.
Polymers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956559

RESUMO

The optical properties of PET have always been a problem that related research has been trying to break through. In the previous work, we modified PET by adding PSLDH (phosphate antioxidant) to obtain a PET film with excellent optical properties. Through non-isothermal crystallization kinetic analysis of modified PET, we hope to verify the conclusion of optical properties by the effect of PSLDH addition on the crystallization properties of PET. PET and PSLDH modified PET were tested by DSC at different cooling rates. The non-isothermal crystallization kinetic process was calculated and analyzed by Jeziorny and Mo methods and the non-isothermal crystallization activation energy was analyzed by Kissinger and Friedman methods by analyzing the DSC curves. The results show that the addition of PSLDH at 0.05 wt% can make the crystallization of PET smaller and slower, which is the same as the case required for excellent optical properties. At the same time, the results can also guide the processing of the optical PET film.

5.
RSC Adv ; 9(20): 11476-11483, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520238

RESUMO

We modified poly(butylene succinate) (PBS) with sugar-based monomer isosorbide to improve the bond strength between PBS and metal interfaces and thereby alleviate the environmental problems caused by nondegradable hot-melt adhesives. We analyzed the efficiency of different catalysts in the synthesis of poly(butylene-co-isosorbide succinate) (PBIS) copolyesters. The thermal stability, thermodynamic characteristics, and melting viscosity of PBIS copolyesters were systematically evaluated by characterization. The results indicate that isosorbide can greatly improve the bond strength of the interface between PBS and the iron plate when copolyesters are used as hot-melt adhesives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...