Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297362

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Guanidinoacetato N-Metiltransferase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição/genética , Neoplasias Pancreáticas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Repressoras
2.
Transl Oncol ; 27: 101583, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36413861

RESUMO

Pancreatic cancer (PC) is a fatal malignancy, threatening human health in worldwide. Long non-coding RNAs (lncRNAs) have been acknowledged to be essential regulators in various biological processes of human cancers. However, the role of some novel lncRNAs in PC remain to be explored. In this study, we focused on the function and molecular mechanism of a novel lncRNA linc-UROD (also named TCONS_00002016 or XLOC_000166) in PC. The expression of linc-UROD was found to be upregulated in PC cells. The results of loss-of-function assays demonstrated that linc-UROD knockdown suppressed cell proliferation and migration, induced cell cycle G0/G1 arrest, and accelerated apoptosis of PC cells. Through mechanistic experiments, we found that IGF2BP3 stabilized linc-UROD through METTL3-mediated m6A modification. In addition, linc-UROD enhances the stability of ENO1 and PKM through interacting with them to inhibit ubiquitination. Detection on glucose consumption, pyruvate kinase activity and lactate production indicated that linc-UROD accelerated glycolysis of PC cells through PKM/ENO1-mediated pathway. To summarize, linc-UROD stabilized by IGF2BP3/METTL3 contributes to glycolysis and malignant phenotype of PC cells by stabilizing ENO1 and PKM. The findings suggest that linc-UROD may be a novel therapeutic target for PC patients.

3.
Exp Cell Res ; 414(2): 113076, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218722

RESUMO

Determining the prognosis of patients remains a challenge due to the phenotypic and molecular diversities of hepatocellular carcinomas (HCC). We aimed to evaluate the role of SMYD5 in HCC. Wilcoxon signed-rank test and logistic regression analyzed the relationship between clinical pathologic features and SMYD5. We found that increased expression of SMYD5 in HCC was closely associated with high histologic grade, stage, T stage and nodal stage. Kaplan-Meier method, Cox regression, univariate analysis and multivariate analysis detected overall survival of TCGA-HCC patients. It turned out that high expression of SMYD5 predicted a worse prognosis in HCC. Gene Set Enrichment Analysis (GSEA) was applied via TCGA data set, which indicated that complement and coagulation cascades, fatty acid metabolism, primary bile acid biosynthesis, drug metabolism cytochrome P450, PPAR signaling pathway and retinol metabolism were differentially enriched in SMYD5 high expression phenotype. Interestingly, we proved that SMYD5 upregulation in HCC cells was induced by promoter hypo-methylation. Moreover, functional experiments demonstrated that SMYD5 silencing abrogated cell proliferation, migration and invasion and enhanced paclitaxel sensitivity in HCC. All findings implied that SMYD5 might be an underlying biomarker for prognosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...