Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561429

RESUMO

Control of the angular momentum of light at the nanoscale is critical for many applications of subwavelength photonics, such as high-capacity optical communications devices, super-resolution imaging and optical trapping. However, conventional approaches to generate optical vortices suffer from either low efficiency or relatively large device footprints. Here we show a new strategy for vortex generation at the nanoscale that surpasses single-pixel phase control. We reveal that interaction between neighbouring nanopillars of a meta-quadrumer can tailor both the intensity and phase of the transmitted light. Consequently, a subwavelength nanopillar quadrumer is sufficient to cover a 2lπ phase change, thus efficiently converting incident light into high-purity optical vortices with different topological charges l. Benefiting from the nanoscale footprint of the meta-quadrumers, we demonstrate high-density vortex beam arrays and high-dimensional information encryption, bringing a new degree of freedom to many designs of meta-devices.

2.
Nat Mater ; 23(1): 71-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919349

RESUMO

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 µm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 10-3 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

3.
Nat Commun ; 14(1): 6410, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828022

RESUMO

We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LGp,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing.

4.
Nano Lett ; 22(10): 3993-3999, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510871

RESUMO

On-chip integrated orbital angular momentum (OAM) sorting is of great importance in tackling the severe challenge of exponential growth in data traffic. Despite the continuous success, current demultiplexing techniques either scarify efficiency dramatically or lose the compactness of a system. Here we experimentally demonstrate an ultracompact OAM sorter using TiO2 metasurfaces integrated onto a complementary metal-oxide-semiconductor (CMOS) camera. By utilizing the propagation phases, we transfer the unitary transformation theory in bulky systems into two TiO2 metasurfaces, responsible for the functions of log-polar transformation and fan-out beam copying and focusing as well as the functions of phase correction and Fourier transform. The flatform metasurface doublet enables one to integrate the OAM sorter onto a camera chip. Consequently, OAM beams with topological charges of m = -3 to 3 were separated by a CMOS camera with an average crosstalk of -6.43 dB. This approach shall shed light on next-generation OAM modes processing.


Assuntos
Óxidos , Semicondutores
5.
Adv Mater ; 33(36): e2101258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34309091

RESUMO

Metasurfaces have shown their unprecedented ability in wavefront shaping and triggered various applications with state-of-the-art performances, e.g., color nanoprinting and metaholograms. Recently, these two functions have been combined into a single metasurface to further expand its capabilities. Despite the progress, the current dual-mode metasurfaces are mostly static and strongly hinder their practical applications. Herein, the realization of dynamic bifunctional metasurfaces is reported. Five metaholograms at two different wavelengths are multiplexed with structural colors by controlling the spectral and phase response of metasurface. Owing to the destructive interference and the resonance on external environment, the light diffraction at particular wavelengths can be switched between "ON" and "OFF" states, or remain unchanged with the change of surrounding refractive index. Consequently, the encoded metaholograms are selectively turned on and off, making the overall holographic image dynamically switchable. This concept paves a solid step toward practical applications of all-dielectric metasurfaces.

6.
Light Sci Appl ; 10(1): 104, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011930

RESUMO

A metasurface hologram combines fine spatial resolution and large viewing angles with a planar form factor and compact size. However, it suffers coherent artifacts originating from electromagnetic cross-talk between closely packed meta-atoms and fabrication defects of nanoscale features. Here, we introduce an efficient method to suppress all artifacts by fine-tuning the spatial coherence of illumination. Our method is implemented with a degenerate cavity laser, which allows a precise and continuous tuning of the spatial coherence over a wide range, with little variation in the emission spectrum and total power. We find the optimal degree of spatial coherence to suppress the coherent artifacts of a meta-hologram while maintaining the image sharpness. This work paves the way to compact and dynamical holographic displays free of coherent defects.

8.
ACS Nano ; 14(12): 17063-17070, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33231424

RESUMO

Micro- and nanolasers are miniaturized light sources with great potential in optical imaging, sensing, and communication. While various micro- and nanolasers have been synthesized, they are mostly linearly polarized and thus strongly restricted in many new applications, e.g., chiral resolution in synthetic chemistry, cancerous tissue imaging, information storage, and processing. Herein, we experimentally demonstrate the circularly polarized surface emitting perovskite lasers by integrating the as-grown perovskite microcrystals with an all-dielectric metalens. The perovskite microcrystal serves as an optical microcavity and produces linearly polarized laser emission, which is collected by a geometric phase based TiO2 metalens. The left-handed circularly polarized components are collimated by the metalens into a directional laser beam with a divergent angle of <0.9°, whereas the right-handed components are strongly diverged by the same metalens. Consequently, the right-handed circularly polarized components are filtered out, and perovskite lasers with high directionality and pure circular polarization have been experimentally realized.

9.
Nat Commun ; 11(1): 5484, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127918

RESUMO

Meta-holographic encryption is a potentially important technique for information security. Despite rapid progresses in multi-tasked meta-holograms, the number of information channels available in metasurfaces is limited, making meta-holographic encryption vulnerable to some attacking algorithms. Herein, we demonstrate a re-programmable metasurface that can produce arbitrary holographic images for optical encryption. The encrypted information is divided into two matrices. These two matrices are imposed to the incident light and the metasurface, respectively. While the all-dielectric metasurface is static, the phase matrix of incident light provides additional degrees of freedom to precisely control the eventual functions at will. With a single Si metasurface, arbitrary holographic images and videos have been transported and decrypted. We hope that this work paves a more promising way to optical information encryption and authentication.

10.
Nat Commun ; 11(1): 4862, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978397

RESUMO

Lead halide perovskite microlasers have been very promising for versatile optoelectronic applications. However, most perovskite microlasers are linearly polarized with uniform wavefront. The structured laser beams carrying orbital angular momentum have rarely been studied and the applications of perovskites in next-generation optical communications are thus hindered. Herein, we experimentally demonstrate the perovskite vortex microlasers with highly directional outputs and well-controlled topological charges. High quality gratings have been experimentally fabricated in perovskite film and the subsequent vertical cavity surface emitting lasers (VCSELs) with divergent angles of 3o are achieved. With the control of Archimedean spiral gratings, the wavefront of the perovskite VCSELs has been switched to be helical with topological charges of q = -4 to 4. This research is able to expand the potential applications of perovskite microlasers in hybrid integrated photonic networks, as well as optical computing.

11.
Science ; 367(6481): 1018-1021, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108108

RESUMO

The development of classical and quantum information-processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.

12.
ACS Nano ; 13(9): 10653-10661, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31430124

RESUMO

Random lasers have been ideal illumination sources for speckle-free and high-speed imaging. Despite their successes, the real applications of random lasers are facing a long-standing challenge, i.e., the cumbersome size of the illuminating system. Herein, we demonstrate perovskite-based surface emitting random lasers (SERLs) and explore their applications in speckle-free imaging. The random lasers are generated by multiple scattering in a perovskite polycrystalline film sandwiched by two distributed Bragg reflectors. Owing to the tight confinement in vertical direction and large number of random resonances, the wavevectors of random lasers are dominated by their vertical components, and thus, multimode SERLs with a divergence angle of ∼3-5° and low spatial coherence are produced. By directly illuminating the patterns with the SERLs, the notable speckle noises of conventional optical images have been dramatically suppressed. This research shall provide a strategy toward the integrated spectral-free imaging systems.

13.
Nanoscale Res Lett ; 13(1): 79, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516198

RESUMO

Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure (~ 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...