Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709468

RESUMO

Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.

2.
Front Microbiol ; 13: 859886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602068

RESUMO

Background: The genus Lecanicillium W.Gams & Zare is a recognized insect pathogen but members of the genus have been found parasitizing various hosts including arthropods, nematodes, plants, and fungi. The new classification system for fungi proposed to reject Lecanicillium and transfer some of the species to the genus Akanthomyces. However, the attribution problem of most species in the original genus Lecanicillium remains unsolved. The current study aimed to improve understanding of the pivotal internal phylogeny in Lecanicillium by estimating the divergence times of Lecanicillium to provide additional insights into the status of this genus within the family Cordycipitaceae. Results: Dating analyses support the supposition that the ancestor of Lecanicillium was in the Cretaceous period (84.36 Mya, 95% HPD: 72.12-94.74 Mya). After originating from a common ancestor, eight clades of Lecanicillium were derived and evolved independently in parallel with other genera of Cordycipitaceae. Based on the clear divergence age estimates, Lecanicillium clade 8 originated earlier as an independent group in the Cretaceous period (75.61 Mya, 95% HPD: 63.31-87.54 Mya), while Lecanicillium clades 1-7 originated later as an independent group in the boundary of the Cretaceous and Paleogene periods (64.66 Mya, 95% HPD: 52.75-76.74 Mya). Lecanicillium huhutii formed an independent branch in a polytomy together with a clade containing Lecanicillium tenuipes (BI posterior probabilities 1, ML bootstrap 100%). Conclusion: The pivotal internal phylogeny, origin, and evolutionary history of Lecanicillium in the family Cordycipitaceae were investigated. Phylogenetic and morphological analyses indicated that there are eight representative clades (four representative branches of evolutionary history), including clade 1 (members have a relatively uniform sporulation structure comprising globose heads with a higher number of conidia), clade 8 (including all members of Gamszarea), clades 2-5 (the differences of the divergence time estimations were smaller compared with other clades), and clade 6-7 (members are close to Gibellula, Hevansia, and Ascopolyporus). Based on the above findings, a novel spider-pathogenic fungus, Lecanicillium huhutii, is described. All other species in Lecanicillium clade 1 (Lecanicillium araneogemum, L. nodulosum, L. pissodis, and L. uredinophilum) should be transferred to the genus Akanthomyces. Furthermore, the monotypic genus Parengyodontium should be merged with the genus Gamszarea. More novel species need to be discovered to thoroughly resolve the attribution problem of Lecanicillium. Finally, no major lineages of Lecanicillium were correlated with the nearby Cretaceous-Tertiary extinction event, indicating that the diversity of Lecanicillium is more likely to be caused by long-term environmental adaptation and coevolution with insects rather than by dramatic extinction events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...