Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704846

RESUMO

Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.

2.
Integr Zool ; 19(2): 240-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37243518

RESUMO

Globally, grassland degradation is an acute ecological problem. In alpine grassland on the Tibetan Plateau, increased densities of various small mammals in degraded grassland are assumed to intensify the degradation process and these mammals are subject to lethal control. However, whether the negative impact of small mammals is solely a result of population size or also a result of activity and behavior has not been tested. In this study, we use plateau pika as a model to compare population size, core area of colony, and the number of burrow entrances and latrines between lightly and severely degraded grassland. We test whether the alleged contribution of pika to grassland degradation is a result of increased population size or increased burrowing activities of individuals in response to lower food abundance. We found that grassland degradation resulted in lower plant species richness, plant height, and biomass. Furthermore, the overall population size of pika was not significantly affected by location in lightly and severely degraded grassland. However, pika core areas in severely grassland degradation were significantly larger and had significantly higher densities of burrows and latrines. Our study provides convincing evidence that habitat-induced changes in the behavior of small, burrowing mammals, such as pika, can exacerbate grassland degradation. This finding has significant implications for managing small mammals and restoring degraded grassland ecosystems.


Assuntos
Ecossistema , Lagomorpha , Humanos , Animais , Retroalimentação , Pradaria , Mamíferos
3.
Virol Sin ; 38(6): 877-888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931840

RESUMO

Emerging and re-emerging viruses from wild animals have seriously threatened the health of humans and domesticated animals in recent years. Herein, we isolated a new mammalian orthoreovirus (MRV), Pika/MRV/GCCDC7/2019 (PMRV-GCCDC7), in the Qinghai-Tibet Plateau wild pika (Ochotona curzoniae). Though the PMRV-GCCDC7 shows features of a typical reovirus with ten gene segments arranged in 3:3:4 in length, the virus belongs to an independent evolutionary branch compared to other MRVs based on phylogenetic tree analysis. The results of cellular susceptibility, species tropism, and replication kinetics of PMRV-GCCDC7 indicated the virus could infect four human cell lines (A549, Huh7, HCT, and LoVo) and six non-human cell lines, including Vero-E6, LLC-MK2, BHK-21, N2a, MDCK, and RfKT cell, derived from diverse mammals, i.e. monkey, mice, canine and bat, which revealed the potential of PMRV-GCCDC7 to infect a variety of hosts. Infection of BALB/c mice with PMRV-GCCDC7 via intranasal inoculation led to relative weight loss, lung tissue damage and inflammation with the increase of virus titer, but no serious respiratory symptoms and death occurred. The characterization of the new reovirus from a plateau-based wild animal has expanded our knowledge of the host range of MRV and provided insight into its risk of trans-species transmission and zoonotic diseases.


Assuntos
Lagomorpha , Orthoreovirus de Mamíferos , Animais , Cães , Camundongos , Lagomorpha/metabolismo , Orthoreovirus de Mamíferos/genética , Filogenia , Virulência , Animais Selvagens , Genômica
4.
Environ Res ; 238(Pt 2): 117222, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778601

RESUMO

Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , RNA Ribossômico 16S , Mamíferos/genética , Cadáver
5.
Integr Zool ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858979

RESUMO

The plateau environments are typically arid, cool, and high altitude, posing formidable challenges to wildlife survival due to resource scarcity and harsh conditions. Unraveling ecological adaptability in severe conditions requires a deeper understanding of the niche characteristics of plateau species. Trophic niche, which is a comprehensive indicator describing the energy acquisition strategy of animals, remains relatively understudied in plateau species. Here, by combining stable isotopes and morphological data, we quantified the trophic niches of two allopatric lizard species (Phrynocephalus vlangalii and P. erythrurus) that live in the hinterland of the Qinghai-Tibetan Plateau, and explored how their trophic niches correlate with morphological and environmental factors. While both trophic niche and morphological traits were similar between species, noteworthy distinctions were observed between male and female Phrynocephalus lizards. The morphological traits associated with predation (i.e. limb length and head size) and reproduction (i.e. abdomen length), annual mean temperature, and sex played influential roles in shifting trophic niches. These results imply that sexual dimorphism may facilitate inter-sex divergence in resource utilization, leading to trophic niche variations in the highland lizards. Furthermore, extreme environmental stress can constrain interspecific divergence in morphological and trophic traits. Our findings illustrate the dynamic variations of trophic niches in highland lizards, contributing to a more comprehensive understanding of the adaptation strategies employed by lizard species in plateau environments.

6.
Curr Zool ; 69(5): 552-558, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37637317

RESUMO

Human disturbance, particularly road traffic, is one of the greatest threats to wildlife. Considering the association between alerting behavior and the survival of animals, it is important to study the effects of road traffic on alerting behavior of wildlife. Previous studies assessing the short-term impact of road traffic on alerting behavior of wildlife have focused on vigilance distances. However, studies on the use of alarm calls are scarce, and it is unclear whether such behavioral responses change after repeated exposure to road traffic. We assessed the alerting behavior of plateau pikas (Ochotona curzoniae) who were near or far from roads when facing a potential predator. We found that pikas near roads exhibited shorter vigilance and tolerance distances, and produced fewer alarm calls than those relatively far away from roads. Furthermore, both vigilance and tolerance distances of plateau pikas were significantly positively correlated with the distance from the burrow to the road. Road traffic reduced antipredator responses and shaped alerting behavior; that is, pikas near roads were bolder and more silent compared to those far away from roads. Our findings suggest that increasing urbanization will have corresponding effects on animal behavior, which may have significant fitness effects in the future.

7.
Sci Total Environ ; 882: 163631, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086993

RESUMO

Determining the response of functional genes and microbiota involved in the nitrogen (N) cycle to warming in the face of global climate change is a hotpot topic. However, whether and how elevated temperature affects the N-cycle genes in polluted water remains unclear. Based on metagenomics, we investigated the responses of the whole N-cycling genes and their microbial communities to the temperature gradients (23, 26, 29, 32, and 35 °C) using animal cadavers as an N-pollution model. We found that the abundance of gene families involved in glutamate metabolism, assimilatory nitrate reduction to nitrite (ANRN), and denitrification pathways decreased with temperature. Moreover, warming reduced the diversity of N-cycling microbial communities. Ecological network analysis indicated that elevated temperature intensified the mutual competition of N-cycle genes. The partial least squares path model (PLS-PM) showed that warming directly suppressed most N-cycle pathways, especially glutamate metabolism, denitrification, and ANRN pathways. Corpse decay also indirectly inhibited N-cycling via regulating N content and microbial communities. Our results highlight warming leads to N accumulation by inhibiting the ANRN and denitrification pathways, which may jeopardize ecological environment security. Our study is expected to provide valuable insights into the complex N-cycle process and N-pollution in warmer aquatic ecosystems.


Assuntos
Microbiota , Nitratos , Animais , Temperatura , Nitrogênio/metabolismo , Metagenômica , Água , Glutamatos , Desnitrificação
8.
Front Microbiol ; 14: 1301480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274745

RESUMO

Intestinal parasites, such as Eimeria, are common among plateau pika (Ochotona curzoniae). The gut microbiome is an essential driver of the host response to gastrointestinal parasites. However, the effects of intestinal protozoal parasites on the temporal variations in the gut microbiome and behavioral and physiological activities remain unknown. Our study conducted treatments involving experimental feeding of pika with Eimeria oocysts or anticoccidia under laboratory conditions to focus on the parasite-associated alterations in gut bacterial communities, host behavioral activity, physiology, and host-bacteria relationships. The results showed insignificant differences in bacterial community structures among treatments on the basis of Bray-Curtis distance metrics, whereas the patterns of temporal alterations in the bacterial communities were changed by the treatments. Bacterial alpha diversities did not vary with the treatments, and experimental feeding with Eimeria slowed down the decrement rate of alpha diversity. Furthermore, few bacterial members were significantly changed by the treatments-only the genus Ruminococcus and the species Ruminococcus flavefaciens, which were associated with energy metabolism. Experimental feeding with Eimeria modified the temporal variations in the bacterial members, including a lower loss rate of the relative abundance of the dominant families Muribaculaceae and Ruminococcaceae in the group with Eimeria experimental feeding. Moreover, a shifting energy trade-off was suggested by the parasite-induced increments in thyroid hormones (triiodothyronine and tetraiodothyronine) and decrements in exploration behavior in the group with Eimeria feeding. However, we did not detect specific connections between gut bacterial communities and pika behaviors and physiology in terms of energy trade-offs. Further in-depth research is needed to examine the role of Eimeria-modified differences in the gut bacteria of plateau pika.

9.
Front Microbiol ; 13: 950811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875528

RESUMO

Plateau pikas (Ochotona curzoniae) are high-altitude model animals and famous "ecosystem engineers" on the Qinghai-Tibet Plateau. Pika activities may accelerate the degradation of alpine meadows. Nevertheless, little is known about the responses of bacterial, fungal, and archaeal communities, and ecosystem multifunctionality to pika perturbations. To address this question, we studied the impacts of only pika disturbance and combined disturbance (pika disturbance and grazing) on ecological networks of soil microbial communities and ecosystem multifunctionality. Our results demonstrated that Proteobacteria, Ascomycota, and Crenarchaeota were dominant in bacteria, fungi, and archaea, respectively. Bacteria, fungi, and archaea were all influenced by the combined disturbance of grazing and pika. Most fungal communities became convergent, while bacterial and archaeal communities became differentiated during the succession of surface types. In particular, the bacterial and fungal networks were less stable than archaeal networks. In response to the interference, cross-domain cooperation between bacterial and fungal communities increased, while competitive interactions between bacterial and archaeal communities increased. Pika disturbance at high intensity significantly reduced the ecosystem multifunctionality. However, the mixed effects of grazing and pika weakened such influences. This study revealed how pika activities affected microbial networks and ecosystem multifunctionality. These results provide insights to designing reasonable ecological management strategies for alpine grassland ecosystems.

10.
Sci Total Environ ; 836: 155732, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35526627

RESUMO

The influences of global climatic change require an understanding of changes in soil microbial communities under precipitation. However, little is known about how soil ("gravesoil") microbial communities associated with corpse decay respond to precipitation. Here, we explored the variations of temporal turnover and assembly in gravesoil bacterial communities in the Qinghai-Tibet Plateau ecosystem via controlled rainfall simulation experiments. In our experiments, rainfall intensity was set to 2.5 and 5 mm/3 days to simulate moderate and heavy rainfall, respectively, and sampling was conducted on the 4th, 11th, 18th, 32nd, 46th and 60th day. Our results showed precipitation significantly altered bacterial abundances and community structures. Analysis of time-decay relationships revealed that precipitation resulted in a divergent succession of gravesoil bacterial community structure and abundance changes of dominant phyla, such as Chloroflexi. Moreover, in the experimental groups, our results suggested that moderate rainfall increased the deterministic processes in the initial and mid periods, whereas heavy rainfall decreased these processes of gravesoil microbial community assembly in every period compared with those in the control group. The dispersal capacity induced by stochastic processes of gravesoil microbial communities decreased over time under moderate rainfall, whereas it initially increased and then decreased under heavy rainfall. This study highlights the influence of heavy rainfall on bacterial communities during corpse decay, which can provide some inferences for predicting changes in soil microbial communities under global climatic change.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias , Cadáver , Humanos , Solo/química
11.
Mol Ecol ; 30(24): 6596-6610, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34564921

RESUMO

The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.


Assuntos
Adaptação Fisiológica , Genoma , Aclimatação , Adaptação Fisiológica/genética , Animais , Genômica , Filogenia , Ratos , Tibet , Transcriptoma
12.
Animals (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199836

RESUMO

Temperament is a consistent behavioral difference among individuals over time or in different contexts. A comprehensive understanding of temperament and complex behavioral interactions enhances knowledge on animal evolution, welfare, and productivity. However, reports on the development of behavioral consistency over ontogeny are vague. Here, we tested the ontogeny of the temperament and physiological traits of Tibetan sheep (Ovis aries) in three crucial age stages. The mean level of the risk-taking variable increased, while that of the vocalizations variable decreased. The exploration variable was stable over ontogeny. The novelty decreased and the heart rate increased from the juvenile to the adolescent stage but stabilized at the adult stage. The fecal cortisol concentration (CORT) variable was stable at the juvenile and adolescent stages but decreased at the adult stage. Stable correlations were reported for the juvenile and adolescent stages and for the behavioral variables and heart rate. However, some correlations emerged only after maturation, whereas others disappeared over ontogeny. Moreover, CORT was independent of temperament and heart rate at different ages. These results demonstrate that age affects temperament and physiology and their correlations. Hence, developmental aspects should be incorporated into future temperament studies.

13.
Microorganisms ; 9(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072124

RESUMO

Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants' gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.

14.
Front Genet ; 12: 784811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126457

RESUMO

According to life history theory, animals living in extreme environments have evolved specific behavioral and physiological strategies for survival. However, the genetic mechanisms underpinning these strategies are unclear. As the highest geographical unit on Earth, the Qinghai-Tibet Plateau is characterized by an extreme environment and climate. During long-term evolutionary processes, animals that inhabit the plateau have evolved specialized morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the native small mammals that evolved on the Qinghai-Tibet Plateau, has adapted well to this cold and hypoxic environment. To explore the genetic mechanisms underlying the physiological adaptations of plateau pika to extremely cold ambient temperatures, we measured the differences in resting metabolic rate (RMR) and metabolism-related gene expression in individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194 m). Results showed that the body mass and RMR of plateau pika at high- and medium-altitudes were significantly higher than those at the low-altitude. The expression levels of peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white (WAT) and brown (BAT) adipose tissues of plateau pika from high- and medium-altitudes were significantly higher than in pika from the low-altitude region. The enhanced expression levels of pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent "browning" and increased thermogenic properties. An increase in the expression of uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT increased their thermogenic properties. The gene expression levels of pparα and pgc-1α in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic gene expression and energy metabolism to adapt to the extreme environments on the plateau.

15.
J Hazard Mater ; 405: 124668, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301975

RESUMO

Photo-Fenton reaction is a more effective technique for pollutant disposal than photocatalytic reaction. Herein, Fe2O3@polypyrrole/Prussian blue (Fe2O3@PPy/PB) with a hierarchical porous structure was prepared by a reactive-template method. After transforming typical type-II Fe2O3@PPy to Z-scheme Fe2O3@PPy/PB via PB as a bridge, the degradation rate was increased by 1.4 times in photocatalytic reaction and 4.0 times in photo-Fenton reaction due to higher visible-light harvest, enhanced separation efficiency of photoinduced charges, lower interface resistance, and especially well-preserved redox potentials of holes and electrons. Mechanism studies revealed that holes were quenched by H2O2, and this led to •O2- generation and efficient separation of electrons. Meanwhile, O2 was reduced by separated electrons, and this further increased •O2- yield. Therefore, the main radicals changed from hole in photocatalytic reaction to •O2- in the photo-Fenton reaction, leading to an increase as high as 12.1-fold enhancement in the degradation rate. Conversely, only H2O2 participated into photocatalytic reaction using Fe2O3@PPy while O2 was absent, resulting in merely 4.2-fold improvement. This manuscript gives a comprehensive understanding on mechanisms of type-II and Z-scheme heterojunctions in both photocatalytic and photo-Fenton reactions. Obviously, the outcomes are beneficial for designing catalysts with high photo-Fenton activity.

16.
Front Vet Sci ; 7: 609, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984417

RESUMO

The rumen microbiota plays an important role in animal functional attributes. These microbes are indispensable for the normal physiological development of the rumen, and may also convert the plant polysaccharides from grass into available milk and meat, making it highly valuable to humans. Exploring the microbial composition and metabolites of rumen across developmental stages is important for understanding ruminant nutrition and metabolism. However, relatively few reports have investigated the microbiome and metabolites across developmental stages in ruminants. Using 16S rRNA gene sequnecing, metabolomics and high-performance liquid chromatography techniques, we compared the rumen microbiota, metabolites and short chain fatty acids (SCFAs) between lambs and sub-adult Tibetan sheep (Ovis aries) from Qinghai-Tibetan Plateau. Bacteroidetes and Spirochaetae were enriched in sub-adult sheep, while Firmicutes and Tenericutes were more abundant in young individuals. The sub-adult individuals had higher alpha diversity values than those in young sheep. Metabolomics analysis showed that the content of essential amino acids and related gene functional pathways in rumen were different between the lambs and sub-adult population. L-Leucine that participates in valine, leucine and isoleucine biosynthesis was more abundant in the lambs, while phenylethylamine that takes part in phenylalanine metabolism was more enriched in the sub-adults. Both rumen microbial community structures and metabolite profiles were impacted by age, but rumen SCFA concentration was relatively stable between different age stages. Some specific microbes (e.g., Clostridium and Ruminococcaceae) were positively associated with L-Leucine but negatively correlated with phenylethylamine, implying that rumen microbes may play different roles for metabolite production at different ages. Mantel test analysis showed that rumen microbiota was significantly correlated with metabolomics and SCFA profiles. Our results indicates the close relationship between microbial composition and metabolites, and also reveal different nutritional requirement for different ages in ruminants, thus having important significance for regulating animal nutrition and metabolism by microbiome intervention.

17.
Microorganisms ; 7(12)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771258

RESUMO

Human skin microbiota plays a crucial role in the defense against pathogens, and is associated with various skin diseases. High elevation is positively correlated with various extreme environmental conditions (i.e., high ultraviolet radiation), which may exert selection pressure on skin microbiota, and therefore influence human health. Most studies regarding skin microbial communities have focused on low-elevation hosts. Few studies have explored skin microbiota in high-elevation humans. Here, we investigated the diversity, function, assembly, and co-occurrence patterns of skin microbiotas from 35 health human subjects across three body sites (forehead, opisthenar, and palm) and seven elevation gradients from 501 to 3431 m. Alpha diversity values (i.e., Shannon diversity and observed operational taxonomic units (OTUs)) decreased with increasing elevation regardless of the body site, while beta diversity (Jaccard and Bray-Curtis dissimilarities) showed an increasing trend with elevation. Elevation is a significant factor that influences human skin microbiota, even after controlling host-related factors. Skin microbiotas at high elevation with more than 3000 m on the Qinghai-Tibet Plateau, had a significant structural or functional separation from those at low elevation with less than 3000 m. Notably, the clustering coefficient, average degree, and network density were all lower at high-elevation than those at low-elevation, suggesting that high-elevation skin networks were more fragile and less connected. Phylogenetic analysis showed that human skin microbiotas are mainly dominated by stochastic processes (58.4%-74.6%), but skin microbiotas at high-elevation harbor a greater portion of deterministic processes than those at low-elevation, indicating that high-elevation may be conducive to the promotion of deterministic processes. Our results reveal that the filtering and selection of the changeable high-elevation environment on the Qinghai-Tibet Plateau may lead to less stable skin microbial community structures.

18.
Microb Biotechnol ; 12(5): 976-992, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31380612

RESUMO

Despite their important roles in host nutrition, metabolism and adaptability, the knowledge on how the mammalian gut microbial community assemble is relatively scanty, especially regarding the ecological mechanisms that govern microbiota along environmental gradients. To address this, we surveyed the diversity, function and ecological processes of gut microbiota in the wild plateau pika, Ochotona curzoniae, along the elevational gradient from 3106 to 4331 m on 'the Roof of the World'-Qinghai-Tibet Plateau. The results indicated that the alpha, beta and functional diversity of gut microbiota significantly increased with elevation, and elevation significantly explained the variations in the gut microbial communities, even after controlling for geographical distance, host sex and body weight. Some gene functions (e.g. nitrogen metabolism and protein kinases) associated with metabolism were enriched in the high-altitude pikas. Null model and phylogenetic analysis suggest that the relative contributions of environmental filtering responsible for local gut communities increased with elevation. In addition, deterministic processes dominated gut microbial communities in the high-altitude (more than 3694 m) pikas, while the percentages of stochastic and deterministic processes were very close in the low-altitude (3106 and 3580 m) pikas. The observed mechanisms that influence pika gut microbiota assembly and function seemed to be mainly mediated by the internal gut environment and by the external environmental pressure (i.e. lower temperature) in the harsh high-altitude environment. These findings enhance our understanding of gut microbiota assembly patterns and function in wild mammals from extreme harsh environments.


Assuntos
Exposição Ambiental , Microbioma Gastrointestinal , Lagomorpha/microbiologia , Animais , Geografia , Redes e Vias Metabólicas/genética , Filogenia , Tibet
19.
Front Zool ; 16: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320918

RESUMO

BACKGROUND: Animals inhabiting high altitudes consistently show slow life-histories. The pace-of-life syndrome (POLS) hypothesis posits behavioural, physiological and/or morphological traits that mediate the trade-off between current and future reproduction or survival, which have coevolved along a slow-fast life history continuum. Previous studies have shown that the life histories of plateau pikas varied across altitude, high-altitude individuals showed slow pace of life which were characterized by few litters per year with small litter sizes. Thus, we hypothesized that pikas populations at higher altitudes would also express personalities characteristic associated with slow life history, such as high sociability, low activity or aggressiveness. We tested this hypothesis by comparing the activity and docility of three plateau pika (Ochotona curzoniae) populations distributed along an altitudinal gradient of the Tibetan Plateau. We predicted that high-altitude pika would be more docile and less active. RESULTS: The behaviour of 556 pikas, from which 120 individuals were measured at least twice, was quantified. We observed that plateau pikas at high altitudes were less active and more docile than pika at lower altitudes. Activity and docility were significantly and negatively correlated in populations from high altitudes but not in populations from low altitudes. CONCLUSIONS: Our results support the POLS hypothesis, highlight the existence of personality variation among populations distributed along an altitudinal gradient and emphasise the importance of environmental selection on personality divergence.

20.
Sci Data ; 6(1): 78, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148554

RESUMO

The Tibetan Plateau is a unique, biodiverse ecosystem with an important role in the climate and hydrological system of Asia. Its vegetation supports important functions including fodder provision, erosion prevention and water retention. Assessing vegetation trends of the Tibetan Plateau is crucial to understand effects of recent climate and land-use changes. Most existing vegetation trend products covering the entire Tibetan Plateau have a coarse spatial grain and cover short temporal ranges. This hampers their applicability in studies conducted at local scales where land-use decisions take place and at time scales where climate changes become apparent. Here, we present vegetation trend products for the entire Tibetan Plateau at a spatial resolution of 30 m for the time period 1990-2018. These products include results of a modified Mann-Kendall trend test applied to annual Landsat-based NDVI mosaics, composed from all satellite observations acquired during the vegetation periods as well as NDVI difference images. These data can be valuable to many researchers including for example wildlife ecologists, rangeland experts and climate change researchers.


Assuntos
Ecossistema , Plantas , Imagens de Satélites , Mudança Climática , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...