Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 970: 176491, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503399

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aß) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aß oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aß is derived from the sequential cleavage of amyloid-ß precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aß generation and anti-Aß aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aß production by reducing ß-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aß oligomer formation by directly binding to Aß. Moreover, YCC31 could attenuate Aß-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Citocinas , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucosídeos/uso terapêutico
2.
Cell Stem Cell ; 23(2): 239-251.e6, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075130

RESUMO

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by mutations in the astrocytic filament gene GFAP. While astrocytes are thought to have important roles in controlling myelination, AxD animal models do not recapitulate critical myelination phenotypes and it is therefore not clear how AxD astrocytes contribute to leukodystrophy. Here, we show that AxD patient iPSC-derived astrocytes recapitulate key features of AxD pathology such as GFAP aggregation. Moreover, AxD astrocytes inhibit proliferation of human iPSC-derived oligodendrocyte progenitor cells (OPCs) in co-culture and reduce their myelination potential. CRISPR/Cas9-based correction of GFAP mutations reversed these phenotypes. Transcriptomic analyses of AxD astrocytes and postmortem brains identified CHI3L1 as a key mediator of AxD astrocyte-induced inhibition of OPC activity. Thus, this iPSC-based model of AxD not only recapitulates patient phenotypes not observed in animal models, but also reveals mechanisms underlying disease pathology and provides a platform for assessing therapeutic interventions.


Assuntos
Doença de Alexander/genética , Doença de Alexander/patologia , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Células Precursoras de Oligodendrócitos/patologia , Doença de Alexander/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Camundongos Knockout , Células Precursoras de Oligodendrócitos/metabolismo
3.
Cell Rep ; 18(11): 2622-2634, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297667

RESUMO

RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransferase complex, dramatically promotes human GSC growth, self-renewal, and tumorigenesis. In contrast, overexpression of METTL3 or inhibition of the RNA demethylase FTO suppresses GSC growth and self-renewal. Moreover, inhibition of FTO suppresses tumor progression and prolongs lifespan of GSC-grafted mice substantially. m6A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m6A enrichment and altered mRNA expression of genes (e.g., ADAM19) with critical biological functions in GSCs. In summary, this study identifies the m6A mRNA methylation machinery as promising therapeutic targets for glioblastoma.


Assuntos
Adenosina/análogos & derivados , Carcinogênese/patologia , Autorrenovação Celular , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , RNA/metabolismo , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Ácido Meclofenâmico/farmacologia , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(25): 9115-20, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927526

RESUMO

The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.


Assuntos
Giro Denteado/metabolismo , Expressão Gênica , Memória , Neurogênese , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Animais , Cognição , Giro Denteado/citologia , Camundongos , Nestina/genética , Nestina/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética
5.
Nat Commun ; 5: 3449, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24622388

RESUMO

Efficient derivation of large-scale motor neurons (MNs) from human pluripotent stem cells is central to the understanding of MN development, modelling of MN disorders in vitro and development of cell-replacement therapies. Here we develop a method for rapid (20 days) and highly efficient (~70%) differentiation of mature and functional MNs from human pluripotent stem cells by tightly modulating neural patterning temporally at a previously undefined primitive neural progenitor stage. This method also allows high-yield (>250%) MN production in chemically defined adherent cultures. Furthermore, we show that Islet-1 is essential for formation of mature and functional human MNs, but, unlike its mouse counterpart, does not regulate cell survival or suppress the V2a interneuron fate. Together, our discoveries improve the strategy for MN derivation, advance our understanding of human neural specification and MN development, and provide invaluable tools for human developmental studies, drug discovery and regenerative medicine.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Neurônios Motores/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Eletrofisiologia , Humanos , Proteínas com Homeodomínio LIM/genética , Camundongos , Neurônios Motores/metabolismo , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
6.
Mol Cell Biol ; 33(13): 2551-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23629626

RESUMO

Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a(-/-) dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated ß-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the ß-catenin-cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the ß-catenin-neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.


Assuntos
Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Wnt/metabolismo , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Giro Denteado/citologia , Giro Denteado/fisiologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/citologia , Prosencéfalo/crescimento & desenvolvimento , Proteínas Wnt/genética , beta Catenina/metabolismo
8.
Nat Cell Biol ; 12(1): 31-40; sup pp 1-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010817

RESUMO

The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.


Assuntos
Proliferação de Células , Neurônios/citologia , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Northern Blotting , Western Blotting , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Marcação In Situ das Extremidades Cortadas , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , beta Catenina/genética
9.
J Cell Physiol ; 221(1): 5-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19562676

RESUMO

Neural stem cells exist in the mammalian developing and adult nervous system. Recently, tremendous interest in the potential of neural stem cells for the treatment of neurodegenerative diseases and brain injuries has substantially promoted research on neural stem cell self-renewal and differentiation. Multiple cell-intrinsic regulators coordinate with the microenvironment through various signaling pathways to regulate neural stem cell maintenance, self-renewal, and fate determination. This review focuses on essential intracellular regulators that control neural stem cell maintenance and self-renewal in both embryonic brains and adult nervous system. These factors include the orphan nuclear receptor TLX, the high-mobility-group DNA binding protein Sox2, the basic helix-loop-helix transcription factor Hes, the tumor suppressor gene Pten, the membrane-associated protein Numb, and its cytoplasmic homolog Numblike. The aim of this review is to summarize our current understanding of neural stem cell regulation through these important stem cell regulators.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Humanos , Fatores de Transcrição/metabolismo
10.
BMC Biochem ; 9: 24, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18801197

RESUMO

BACKGROUND: The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG), an essential allosteric activator of carbamylphosphate synthetase I (CPSI) in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII) in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS), which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. RESULTS: Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K) of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. CONCLUSION: Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine inhibition of NAGS to activation was gradual, from complete inhibition of bacterial NAGS, to partial inhibition of fish NAGS, to activation of frog and mammalian NAGS. This change also coincided with the conquest of land by amphibians and mammals.


Assuntos
Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Arginina/farmacologia , Evolução Biológica , Regulação Alostérica , Sequência de Aminoácidos , Aminoácido N-Acetiltransferase/genética , Animais , Arginina/metabolismo , Biomarcadores/metabolismo , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo
11.
Mol Endocrinol ; 22(1): 56-64, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17901127

RESUMO

TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Neurônios/citologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Células-Tronco/citologia , Animais , Western Blotting , Encéfalo/embriologia , Ciclo Celular/genética , Proliferação de Células , Feminino , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Gravidez , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
12.
BMC Biochem ; 8: 4, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17425781

RESUMO

BACKGROUND: In microorganisms and plants, the first two reactions of arginine biosynthesis are catalyzed by N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK). In mammals, NAGS produces an essential activator of carbamylphosphate synthetase I, the first enzyme of the urea cycle, and no functional NAGK homolog has been found. Unlike the other urea cycle enzymes, whose bacterial counterparts could be readily identified by their sequence conservation with arginine biosynthetic enzymes, mammalian NAGS gene was very divergent, making it the last urea cycle gene to be discovered. Limited sequence similarity between E. coli NAGS and fungal NAGK suggests that bacterial and eukaryotic NAGS, and fungal NAGK arose from the fusion of genes encoding an ancestral NAGK (argB) and an acetyltransferase. However, mammalian NAGS no longer retains any NAGK catalytic activity. RESULTS: We identified a novel bifunctional N-acetylglutamate synthase and kinase (NAGS-K) in the Xanthomonadales order of gamma-proteobacteria that appears to resemble this postulated primordial fusion protein. Phylogenetic analysis indicated that xanthomonad NAGS-K is more closely related to mammalian NAGS than to other bacterial NAGS. We cloned the NAGS-K gene from Xanthomonas campestis, and characterized the recombinant NAGS-K protein. Mammalian NAGS and its bacterial homolog have similar affinities for substrates acetyl coenzyme A and glutamate as well as for their allosteric regulator arginine. CONCLUSION: The close phylogenetic relationship and similar biochemical properties of xanthomonad NAGS-K and mammalian NAGS suggest that we have identified a close relative to the bacterial antecedent of mammalian NAGS and that the enzyme from X. campestris could become a good model for mammalian NAGS in structural, biochemical and biophysical studies.


Assuntos
Aminoácido N-Acetiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Xanthomonas campestris/enzimologia , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/genética , Animais , Arginina/biossíntese , Clonagem Molecular , Sequência Conservada , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/isolamento & purificação , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Xanthomonas campestris/genética
13.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 62(Pt 12): 1218-22, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17142901

RESUMO

A novel N-acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N-acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6(2)22, with unit-cell parameters a = b = 134.60, c = 192.11 A, and diffract to about 3.0 A resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method.


Assuntos
Aminoácido N-Acetiltransferase/química , Complexos Multienzimáticos/química , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Xanthomonas campestris/enzimologia , Aminoácido N-Acetiltransferase/biossíntese , Cristalização , Cristalografia por Raios X , Complexos Multienzimáticos/biossíntese , Fosfotransferases (Aceptor do Grupo Carboxila)/biossíntese , Proteínas Recombinantes/biossíntese , Selenometionina/metabolismo
14.
J Biol Chem ; 279(46): 47890-7, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15364950

RESUMO

The gene cluster in Thermococcus litoralis encoding a multicomponent and binding protein-dependent ABC transporter for trehalose and maltose contains an open reading frame of unknown function. We cloned this gene (now called treT), expressed it in Escherichia coli, purified the encoded protein, and identified it as an enzyme forming trehalose and ADP from ADP-glucose and glucose. The enzyme can also use UDP- and GDP-glucose but with less efficiency. The reaction is reversible, and ADP-glucose plus glucose can also be formed from trehalose and ADP. The rate of reaction and the equilibrium favor the formation of trehalose. At 90 degrees C, the optimal temperature for the enzymatic reaction, the half-maximal concentration of ADP-glucose at saturating glucose concentrations is 1.14 mm and the V(max) is 160 units/mg protein. In the reverse reaction, the half-maximal concentration of trehalose at saturating ADP concentrations is 11.5 mm and the V(max) was estimated to be 17 units/mg protein. Under non-denaturating in vitro conditions the enzyme behaves as a dimer of identical subunits of 48 kDa. As the transporter encoded in the same gene cluster, TreT is induced by trehalose and maltose in the growth medium.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Arqueais/metabolismo , Glucose/metabolismo , Thermococcus/enzimologia , Trealose/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Maltose/metabolismo , Dados de Sequência Molecular , Peso Molecular , Família Multigênica , Fases de Leitura Aberta , Alinhamento de Sequência , Temperatura , Thermococcus/genética
15.
Extremophiles ; 8(4): 301-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15138858

RESUMO

Close to an operon encoding an ABC transporter for maltose and trehalose, Thermococcus litoralis contains a gene whose encoded sequence showed similarity to sugar kinases. We cloned this gene, now called frk, and expressed it as a C-terminal His-tag version in Escherichia coli. We purified the recombinant protein, identified it as an ATP-dependent and fructose-6-phosphate-forming fructokinase (Frk) and determined its biochemical properties. At its optimal temperature of 80 degrees C, the apparent Km and Vmax values of Frk were 2.3 mM and 730 U/mg protein for fructose at saturating ATP concentration, and 0.81 mM and 920 U/mg protein for ATP at saturating fructose concentration. The enzyme did not lose activity at 80 degrees C for 4 h. Under denaturating conditions in SDS-PAGE, it exhibited a molecular mass of 35 kDa. Gel-filtration chromatography revealed a molecular mass of 58 kDa, indicating a dimer under nondenaturating, in vitro conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Frutoquinases/metabolismo , Glucose-6-Fosfato/biossíntese , Thermococcus/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Sequência Conservada , Primers do DNA , Estabilidade Enzimática , Frutoquinases/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
16.
J Biol Chem ; 278(2): 983-90, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12426307

RESUMO

We report the characterization of TrmB, a protein of 38,800 apparent molecular weight, that is involved in the maltose-specific regulation of a gene cluster in Thermococcus litoralis, malE malF malG orf trmB malK, encoding a binding protein-dependent ABC transporter for trehalose and maltose. TrmB binds maltose and trehalose half-maximally at 20 microm and 0.5 mm sugar concentration, respectively. Binding of maltose but not of trehalose showed indications of sigmoidality and quenched the intrinsic tryptophan fluorescence by 15%, indicating a conformational change on maltose binding. TrmB causes a shift in electrophoretic mobility of DNA fragments harboring the promoter and upstream regulatory motif identified by footprinting. Band shifting by TrmB can be prevented by maltose. In vitro transcription assays with purified components from Pyrococcus furiosus have been established to show pmalE promoter-dependent transcription at 80 degrees C. TrmB specifically inhibits transcription, and this inhibition is counteracted by maltose and trehalose. These data characterize TrmB as a maltose-specific repressor for the trehalose/maltose transport operon of Thermococcus litoralis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Arqueais/fisiologia , Maltose/metabolismo , Família Multigênica , Óperon , Proteínas Repressoras/fisiologia , Thermococcus/genética , Trealose/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/isolamento & purificação , Sequência de Bases , Sítios de Ligação , Maltose/genética , Dados de Sequência Molecular , Proteínas Repressoras/isolamento & purificação , Thermococcus/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA