Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 7(8): 1903525, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328432

RESUMO

Reactive oxygen species (ROS) are generated in the body and related to many pathophysiological processes. Hence, detection of ROS is indispensable in understanding, diagnosis, and treatment of many diseases. Here, near-infrared (NIR) chemiluminescent (CL) carbon nanodots (CDs) are fabricated for the first time and their CL quantum yield can reach 9.98 × 10-3 einstein mol-1, which is the highest value ever reported for CDs until now. Nanointegration of NIR CDs and peroxalate (P-CDs) through the bridging effect of amphiphilic triblock copolymer can serve as turn-on probes for the detection and imaging of hydrogen peroxide (H2O2). Considering high efficiency and large penetration depth of NIR photons, the P-CDs are employed in bioimaging H2O2 in vitro and in vivo, and the detection limit can reach 5 × 10-9 m, among the best reported of CDs-based sensors. Moreover, imaging of inflammatory H2O2 in a mouse model of peritonitis is achieved by employing the P-CDs as sensors. The results may provide a clue for the diagnosis and treatment of inflammation or cancers employing CL CDs as sensors.

2.
J Phys Chem Lett ; 10(16): 4596-4602, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31361140

RESUMO

Carbon dots (CDs) have shown great potential in various applications including biomedicines and optoelectronics. However, the origin of their photoluminescence excitation dependence (PL-ED) still remains uncertain, and this can limit the full exploit of their wonderful optical properties. Here we studied the mechanism for the PL-ED of solvothermally synthesized CDs using an alkali treatment. As-synthesized CDs were found to agglomerate and exhibited multicolor emissions with strong PL-ED. The alkali treatment can effectively break down the clusters into individual CDs via the hydrolysis of the amide and ester bonds that link the CDs together. This process effectively narrowed the emission line width and suppressed the observed PL-ED. The understanding of the excitation dependence mechanism here outlined a novel strategy for tailoring of the PL-ED of CDs via a synergy of chemical and physical processes, thus enhancing the versatility of CDs for a broader spectrum of applications.

3.
Adv Sci (Weinh) ; 6(11): 1802331, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179212

RESUMO

The various luminescent properties of carbon nanodots (CDs) reveal fascinating applications in several areas. Here, bright and multicolor chemiluminescence (CL) is realized from CDs, whose CL quantum yield can be optimized by adjusting the energy level alignment between the CDs and 1,2-dioxetanedione intermediate generated from the reaction of peroxalate and hydrogen peroxide. A CL quantum yield of 9.32 × 10-3 Einsteins mol-1, maximal luminance of 3.28 cd m-2, and lifetime of 186.4 s are achieved in red CDs, all of which are the best values ever reported for CDs. As a proof-of-concept prototype, a high-quality information encryption strategy is established via CD based CL imaging techniques by virtue of the high brightness and multicolor CL.

4.
Light Sci Appl ; 5(7): e16120, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30167175

RESUMO

A novel concept and approach to engineering carbon nanodots (CNDs) were explored to overcome the limited light absorption of CNDs in low-energy spectral regions. In this work, we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding. The resulting supra-CNDs are the first to feature a strong, well-defined absorption band in the visible to near-infrared (NIR) range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.

5.
Sci Rep ; 4: 7469, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25502422

RESUMO

Ultraviolet photodetectors have been fabricated from ZnO quantum dots/carbon nanodots hybrid films, and the introduction of carbon nanodots improves the performance of the photodetectors greatly. The photodetectors can be used to detect very weak ultraviolet signals (as low as 12 nW/cm(2)). The detectivity and noise equivalent power of the photodetector can reach 3.1 × 10(17) cmHz(1/2)/W and 7.8 × 10(-20) W, respectively, both of which are the best values ever reported for ZnO-based photodetectors. The mechanism for the high sensitivity of the photodetectors has been attributed to the enhanced carrier-separation at the ZnO/C interface.

6.
ACS Nano ; 8(3): 2541-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24517361

RESUMO

Carbon nanodots (C-dots) synthesized by electrochemical ablation and small molecule carbonization, as well as graphene quantum dots (GQDs) fabricated by solvothermally cutting graphene oxide, are three kinds of typical green fluorescence carbon nanomaterials. Insight into the photoluminescence origin in these fluorescent carbon nanomaterials is one of the important matters of current debates. Here, a common origin of green luminescence in these C-dots and GQDs is unraveled by ultrafast spectroscopy. According to the change of surface functional groups during surface chemical reduction experiments, which are also accompanied by obvious emission-type transform, these common green luminescence emission centers that emerge in these C-dots and GQDs synthesized by bottom-up and top-down methods are unambiguously assigned to special edge states consisting of several carbon atoms on the edge of carbon backbone and functional groups with C═O (carbonyl and carboxyl groups). Our findings further suggest that the competition among various emission centers (bright edge states) and traps dominates the optical properties of these fluorescent carbon nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...