Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959948

RESUMO

Conjugated polymers have gained considerable interest due to their unique structures and promising applications in areas such as optoelectronics, photovoltaics, and flexible electronics. This review focuses on the structure-property relationship, glass transition, and crystallization behaviors of conjugated polymers. Understanding the relationship between the molecular structure of conjugated polymers and their properties is essential for optimizing their performance. The glass transition temperature (Tg) plays a key role in determining the processability and application of conjugated polymers. We discuss the mechanisms underlying the glass transition phenomenon and explore how side-chain interaction affects Tg. The crystallization behavior of conjugated polymers significantly impacts their mechanical and electrical properties. We investigate the nucleation and growth processes, as well as the factors that influence the crystallization process. The development of the three generations of conjugated polymers in controlling the crystalline structure and enhancing polymer ordering is also discussed. This review highlights advanced characterization techniques such as X-ray diffraction, atomic force microscopy, and thermal analysis, which provide insights into molecular ordering and polymer-crystal interfaces. This review provides an insight of the structure-property relationship, glass transition, and crystallization behaviors of conjugated polymers. It serves as a foundation for further research and development of conjugated polymer-based materials with enhanced properties and performance.

2.
J Surg Oncol ; 128(4): 510-518, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37272486

RESUMO

BACKGROUND: Malignant pheochromocytoma/paraganglioma (PCPG) is lethal and difficult to diagnose before metastasis. This study is aiming to characterize the PCPG and explore novel prognostic markers. METHODS: Clinical data of patients with pathologically confirmed invasive and noninvasive PCPG were collected and analyzed. Then, the differentially expressed genes (DEGs) and HUB genes were identified by R package "limma" in GSE67066-GPL570. Afterward, the prognostic markers were screened out using R packages of "survival" and "survminer" based on the TCGA data. RESULTS: The 34 invasive PCPGs were characterized by irregular contour and unclear boundary on CT and capsule/extracapsule tissue invasion on pathology compared with the 42 noninvasive PCPGs. Then, 29 upregulated and 30 downregulated DEGs were identified in malignant PCPG compared with benign, which were mainly enriched in the terms of calcium ion binding, neuron cell-cell adhesion, axon, regulation of hormone levels, and regulation of secretion by cell. Of which, nine DEGs were furtherly selected as the HUB genes. Finally, CNTN4 and SH3GL2 were found to be highly expressed in malignant PCPGs and negatively correlated with progression-free interval. CONCLUSIONS: Malignant PCPGs tend to be aggressive in imaging and pathology. The high expression of CNTN4 and SH3GL2 in PCPGs may indicate a poor prognosis.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/genética , Feocromocitoma/patologia , Prognóstico , Paraganglioma/genética , Neoplasias das Glândulas Suprarrenais/patologia
3.
Aging (Albany NY) ; 15(10): 4159-4181, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171396

RESUMO

Hepatocellular carcinoma (HCC) is a type of liver cancer that originates from liver cells. It is one of the most common types of liver cancer and a leading cause of cancer-related death worldwide. Early detection and treatment can improve the HCC prognosis. Therefore, it is necessary to further improve HCC markers and risk stratification. PANoptosome is a cytoplasmic polymer protein complex that regulates a proinflammatory programmed cell death pathway called "PANoptosis". The role of PANoptosis in HCC remains unclear. In this study, the molecular changes of PANoptosis related genes (PAN-RGs) in HCC were systematically evaluated. We characterized the heterogeneity of HCC by using consensus clustering to identify two distinct subtypes. The two subtypes showed different survival rate, biological function, chemotherapy drug sensitivity and immune microenvironment. After identification of PAN-RG differential expression genes (DEGs), a prognostic model was established by Cox regression analysis using minimum absolute contraction and selection operator (LASSO), and its prognostic value was verified by Cox regression analysis, Kaplan-Meier curve and receiver operating characteristic (ROC) curve. Our own specimens were also used to further validate the prognostic significance and possible clinical value of the selected targets. Subsequently, we conducted a preliminary discussion on the reasons for the influence of the model on the prognosis through TME analysis, drug resistance analysis, TMB analysis and other studies. This study provides a new idea for individualized and precise treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Hepatócitos , Apoptose , Análise por Conglomerados , Prognóstico , Microambiente Tumoral
4.
Polymers (Basel) ; 15(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850080

RESUMO

This paper provides a viewpoint of the technology of the fast-scanning calorimetry with the relaxation behavior of disordered side chains of poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-C12) around the glass transition temperature of the side chains (Tg,γ). PBTTT is an ideal model of the high-performance copolymer of poly(alkylthiophenes) with side chains. The γ1 relaxation process of the disordered side chains of PBTTT was detected as a small endothermic peak that emerges before the γ2 relaxation process. It shows an increase with increasing temperature as it approaches the glass transition temperature of the disordered side chains of PBTTT. The ductile-brittle transition of PBTTT in low temperatures originating from the thermal relaxation process is probed and illustrated by physical aging experiments. The signature is shown that the relaxation process of the disordered side chain of PBTTT at low temperatures varies from Arrhenius temperature dependence to super Arrhenius temperature dependence at high temperatures. These observations could have significant consequences for the stability of devices based on conjugated polymers, especially those utilized for stretchable or flexible applications, or those demanding mechanical robustness during tensile fabrication or use in a low-temperature environment.

5.
Kaohsiung J Med Sci ; 38(11): 1080-1092, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36200682

RESUMO

This study was designed to explore the effects of exosomal miR-421 secreted by cancer-associated fibroblasts (CAFs) on pancreatic cancer (PC) progression and the mechanisms involved. CAFs and exosomes (exos) were isolated and identified. PC cells were treated with CAF-derived exos (CAF-exos). Western blotting and quantitative polymerase chain reaction (qPCR) were used to measure miR-421, sirtuin-3 (SIRT3), and hypoxia duciblefactors-1 alpha (HIF-1α) levels. Cell counting kit-8 (CCK-8), wound-healing, and transwell migration assays were used to measure proliferation, migration, and invasion abilities of the cells. Dual-luciferase assay and RNA immunoprecipitation (RIP) experiment analyzed the relationship between miR-421 and SIRT3. Chromatin immunoprecipitation (f)-verified H3K9Ac enrichment in the HIF-1α promoter region. In vivo tumorigenesis experiments were performed to further explore the effects of exosomal miR-421 from CAFs on PC. CAFs and exos were successfully isolated. CAF-exo-treated PC cells highly expressed miR-421 and had increased cell proliferation, migration, and invasion abilities. Knocking down miR-421 increased the expression of SIRT3. SIRT3 is a target of miR-421, and inhibiting the expression of SIRT3 reversed the negative effects of miR-421 knockdown on PC cell. Knocking down miR-421 in CAF-exo inhibited the expression of HIF-1α in PC cells. Moreover, SIRT3-mediated HIF-1α expression by regulating H3K9Ac. HIF-1α overexpression reversed the inhibiting effects of SIRT3 overexpression on PC progression and counteracted the inhibiting effects of miR-421 knockdown on glycolysis. Moreover, in vivo tumorigenesis experiments showed that knocking down miR-421 attenuated CAF-exo induced tumor growth. Exosomal miR-421 from CAFs promoted PC progression by regulating the SIRT3/H3K9Ac/HIF-1α axis. This study provided insights into the molecular mechanism of PC.


Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Neoplasias Pancreáticas , Sirtuína 3 , Humanos , Fibroblastos Associados a Câncer/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Sirtuína 3/genética , Sirtuína 3/metabolismo , Histonas/metabolismo , Neoplasias Pancreáticas
6.
Kaohsiung J Med Sci ; 38(12): 1155-1167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149758

RESUMO

Pancreatic cancer (PC) is a common malignant cancer characterized by high mortality and poor prognosis. LINC00690 was involved in the occurrence and progression of PC, but the underlying mechanisms require further investigation. The goal of this study was to figure out how LINC00960 mediates glycolysis in PC. LINC00960, miR-326-3p, and Tuftelin 1 (TUFT1) expression levels were detected in PC cell lines. LINC00960 and TUFT1 expression levels were increased in PC cells when compared with normal pancreatic cells, whereas miR-326-3p expression levels were decreased. The expression levels of LINC00690 affected glycolysis in PC, and inhibition of LINC00960 inhibited tumor growth in vivo. LINC00690 targeted and suppressed the expression of miR-326-3p. MiR-326-3p bound to TUFT1, and miR-326-3p inhibited AKT-mTOR pathway activation via TUFT1. In conclusion, the depletion of LINC00960 repressed cell proliferation and glycolysis in PC by mediating the miR-326-3p/TUFT1/AKT-mTOR axis. Thus, we present a novel mechanism underlying the progression of PC that suggests LINC00960 is a potential therapeutic target for this cancer.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Longo não Codificante/genética , Neoplasias Pancreáticas
7.
Int J Pharm ; 610: 121235, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743960

RESUMO

Coamorphous drug delivery systems have emerged as a promising formulation technique for improving the solubility and oral bioavailability of poorly soluble drugs. The selection of a suitable coformer is the key to obtaining a successful coamorphous formulation. This study aims to investigate the impacts of coformers with similar chemical structures but different physical properties on the crystallization behavior and molecular dynamics of binary amorphous systems. The addition of three profen analogs, ibuprofen (IBU), ketoprofen (KETO) and indoprofen (INDO) leads to significantly different effects on the crystallization kinetics of amorphous nimesulide (NIME). The crystal growth rates for amorphous NIME are substantially accelerated in the presence of IBU, but drastically reduced in the presence of INDO, while the incorporation of KETO results in a negligible effect. Broadband dielectric spectroscopy is employed to characterize the molecular dynamics of neat amorphous NIME and coamorphous systems. The addition of three structural analogs alters the molecular mobility of amorphous NIME in different ways, which is consistent with the trend observed for their impacts on the crystallization kinetics, suggesting that the relative mobility between the components of coamorphous mixtures governs the physical stability. In addition, it is found that the temperature dependence of the α-relaxation times for NIME with and without coformers is superimposed once the temperature is scaled by Tg/T, whereas the crystallization kinetics do not overlap on a Tg/T scale. This deviation can result from a complex interplay of thermodynamic and kinetic factors involved in multicomponent amorphous systems. This study provides insights into the crystallization kinetics and molecular dynamics of coamorphous systems containing drug analogs, which can potentially offer more flexibility for the control of physical stability without sacrificing therapeutic efficacy.


Assuntos
Simulação de Dinâmica Molecular , Cristalização , Cinética , Solubilidade , Sulfonamidas
8.
Front Cell Neurosci ; 15: 713651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512267

RESUMO

Complement C1q Like 1 (C1QL1), a secreted component of C1Q-related protein, is known to play an important role in synaptic maturation, regulation, and maintenance in the central nervous system. C1ql1 is expressed in adult cochlear inner and outer hair cells (IHCs and OHCs) with preferential expression in OHCs. We generated C1ql1 null mice to examine the role of C1QL1 in the auditory periphery. C1ql1-null mice exhibited progressive hearing loss with elevated thresholds of auditory brainstem response and distortion product otoacoustic emission. Confocal microscopy showed that the number of nerve fibers innervating both IHCs and OHCs was significantly reduced. However, spiral ganglion neurons appeared to be normal under electron microscopy. IHC development and survival were not affected by deletion of C1ql1. Voltage-clamp recording and immunocytochmistry combined with confocal microscopy showed C1ql1-null IHCs showed no significant reduction of pre-synaptic proteins and synaptic vesicle release. This is in contrast to significant OHC loss in the KO mice. Our study suggests that C1ql1 is essential for development of hair cell innervation and OHC survival. But maturation of presynaptic machinery in IHCs does not depend on C1QL1.

9.
Neural Plast ; 2020: 3949161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774354

RESUMO

Tinnitus is a common auditory disease worldwide; it is estimated that more than 10% of all individuals experience this hearing disorder during their lifetime. Tinnitus is sometimes accompanied by hearing loss. However, hearing loss is not acquired in some other tinnitus generations. In this study, we injected adult rats with salicylate sodium (SS) (200 mg/kg/day for 10 days) and found no significant hearing threshold changes at 2, 4, 8, 12, 14, 16, 20, or 24 kHz (all p > 0.05). Tinnitus was confirmed in the treated rats via Behaviour Testing of Acoustic Startle Response (ASR) and Gap Prepulse Inhibition Test of Acoustic Startle Reflex (GPIAS). A immunostaining study showed that there is significant loss of anti-CtBP2 puncta (a marker of cochlear inner hair cell (HC) ribbon synapses) in treated animals in apical, middle, and basal turns (all p < 0.05). The ABR wave I amplitudes were significantly reduced at 4, 8, 12, 14, 16, and 20 kHz (all p < 0.05). No significant losses of outer HCs, inner HCs, or HC cilia were observed (all p > 0.05). Thus, our study suggests that loss of cochlear inner HC ribbon synapse after SS exposure is a contributor to the development of tinnitus without changing hearing threshold.


Assuntos
Cóclea/fisiologia , Audição/fisiologia , Salicilato de Sódio/administração & dosagem , Sinapses/fisiologia , Zumbido/induzido quimicamente , Zumbido/fisiopatologia , Animais , Limiar Auditivo/efeitos dos fármacos , Limiar Auditivo/fisiologia , Cóclea/efeitos dos fármacos , Modelos Animais de Doenças , Audição/efeitos dos fármacos , Masculino , Ratos Wistar , Sinapses/efeitos dos fármacos
10.
Hear Res ; 391: 107953, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32234638

RESUMO

A flat epithelium (FE) may be found in the vestibular end organs of humans and mice with vestibular dysfunction. However, the pathogenesis of FE is unclear and inducing hair cell (HC) regeneration is challenging, as both HCs and supporting cells (SCs) in vestibular FE are damaged. To determine the cellular origin of vestibular FE and examine its response to Atoh1 overexpression, we fate-mapped vestibular epithelial cells in three transgenic mouse lines (vGlut3-iCreERT2:Rosa26tdTomato, GLAST-CreERT2:Rosa26tdTomato, and Plp-CreERT2:Rosa26tdTomato) after inducing a lesion by administering a high dose of streptomycin. Atoh1 overexpression in vestibular FE was mediated by an adeno-associated virus serotype 8 (AAV8) vector. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, was administered with AAV8 to enhance Atoh1 overexpression. The transduction efficiency and population of myosin VIIa-positive cells were analyzed. A small number of HCs were present in vestibular FE. FE did not show broad GLAST-Cre or Plp-Cre expression, unlike the original SCs. SAHA dramatically enhanced AAV8-mediated exogenous gene overexpression, and Atoh1 overexpression plus SAHA promoted myosin VIIa expression in FE cells. Our data provide insight into FE formation and will facilitate studies of gene therapy for vestibular FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Epitélio/metabolismo , Vestíbulo do Labirinto/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Rastreamento de Células , Dependovirus/genética , Epitélio/efeitos dos fármacos , Epitélio/patologia , Vetores Genéticos , Inibidores de Histona Desacetilases/farmacologia , Camundongos Transgênicos , Estreptomicina/toxicidade , Transdução Genética , Regulação para Cima , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/patologia , Vorinostat/farmacologia
11.
Neuroscience ; 434: 120-135, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32201268

RESUMO

Noise-induced hidden hearing loss (NIHHL), one of the family of conditions described as noise-induced hearing loss (NIHL), is characterized by synaptopathy following moderate noise exposure that causes only temporary threshold elevation. Long noncoding RNAs (lncRNAs) mediate several essential regulatory functions in a wide range of biological processes and diseases, but their roles in NIHHL remain largely unknown. In order to determine the potential roles of these lncRNAs in the pathogenesis of NIHHL, we first evaluated their expression in NIHHL mice model and mapped possible regulatory functions and targets using RNA-sequencing (RNA-seq). In total, we identified 133 lncRNAs and 522 mRNAs that were significantly dysregulated in the NIHHL model. Gene Ontology (GO) showed that these lncRNAs were involved in multiple cell components and systems including synapses and the nervous and sensory systems. In addition, a lncRNA-mRNA network was constructed to identify core regulatory lncRNAs and transcription factors. KEGG analysis was also used to identify the potential pathways being affected in NIHHL. These analyses allowed us to identify the guanine nucleotide binding protein alpha stimulating (GNAS) gene as a key transcription factor and the adrenergic signaling pathway as a key pathway in the regulation of NIHHL pathogenesis. Our study is the first, to our knowledge, to isolate a lncRNA mediated regulatory pathway associated with NIHHL pathogenesis; these observations may provide fresh insight into the pathogenesis of NIHHL and may pave the way for therapeutic intervention in the future.


Assuntos
Perda Auditiva Provocada por Ruído , RNA Longo não Codificante , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Camundongos , RNA Longo não Codificante/genética , RNA Mensageiro , Análise de Sequência de RNA
12.
Neuroscience ; 431: 1-16, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032574

RESUMO

Cochlear ribbon synapses formed between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are immature at birth and they require dramatic morphological and functional developments to achieve auditory maturation in postnatal mice. However, the mechanism underlying this remodeling process of cochlear ribbon synapse remains elusive. Here, we report that autophagy is necessary for the development and maturation of cochlear ribbon synapses in mice. In this study, significantly high levels of LC3B (a widespread marker of autophagy) were found in the cochlea from postnatal day 1 (P1) to P15, which then decreased at P28 to P30. Treatment of mice at P7 with rapamycin or 3-methyladenine (activator and inhibitor of autophagy, respectively) for 7 days led to the significant elevations of hearing threshold across frequencies from P15 to P30. Moreover, abnormal morphology of cochlear ribbon synapses and reduced IHC exocytosis function were detected from P15 to P30, which were likely associated to hearing impairment. Thus, our study demonstrated that autophagy was required for remodeling of cochlear ribbon synapses and provided a new insight into autophagy-related hearing disorder during auditory development. Furthermore, we implicated a novel therapeutic target for sensorineural hearing loss.


Assuntos
Células Ciliadas Auditivas Internas , Sinapses , Animais , Autofagia , Cóclea , Camundongos , Gânglio Espiral da Cóclea
13.
Neuroscience ; 429: 173-184, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935490

RESUMO

Repeated induction of a temporary threshold shift (TTS) may result in a permanent threshold shift (PTS) and is thought to be associated with early onset of age-related hearing loss (ARHL). The possibility that a PTS might be induced by administration of repeated TTS-inducing noise exposures (NEs) over a short period during early adulthood has not been formally investigated. We aimed to investigate possible cumulative acoustic overstimulation effects that permanently shift the auditory threshold. Young adult C57BL/6J mice were exposed twice to moderate white noise in an experimental design that minimized the effects of aging. The first exposure resulted in a reversible noise-induced hearing loss (NIHL) measured as recoverable alterations in auditory brainstem response (ABR) thresholds, waveform amplitudes, and numbers of ribbon synapses. The second NE with the same parameters caused persistent threshold shifts, wave I amplitude reductions, wave IV/I ratio enhancements, and synaptic losses, even though recovery time sufficient for a TTS had been provided. The pattern of PTS resembled NIHL since the observed impairments tonotopically followed the power spectrum of the noise insult, rather than ARHL, which distributes at higher frequencies. No significant changes were observed in the control group as the mice aged. To conclude, our results demonstrate a cumulative effect of repetitive TTS-inducing NE on hearing function and synaptic plasticity that does not cause premature ARHL, thereby providing insight into the pathophysiological mechanisms underlying NIHL and ARHL.


Assuntos
Cóclea , Perda Auditiva Provocada por Ruído , Animais , Limiar Auditivo , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Endogâmicos C57BL , Sinapses
14.
Neurochem Int ; 133: 104649, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870891

RESUMO

Presbycusis results from age-related degeneration of the auditory system. D-galactose (D-gal)-induced aging is an ideal and commonly used animal model in aging research. Previous studies demonstrate that administration of D-gal can activate mitochondria-dependent apoptosis in the cochlear stria vascularis. However, D-gal-induced changes to cochlear inner (IHCs) and outer (OHCs) hair cells, spiral ganglion cells (SGCs), and ribbon synapses connecting IHCs and SGCs have not been systematically reported. The current study investigated changes in the numbers of hair cells, SGCs, and ribbon synapses in the mouse model of aging. We found that in comparison to control mice, the numbers of ribbon synapses and their nerve fibers were significantly decreased in D-gal-treated mice, whereas the numbers of OHCs, IHCs, and SGCs were almost unchanged. Moreover, hair cell stereocilia were also not obviously influenced by D-gal administration. Although D-gal-induced aging did not significantly shift the auditory brainstem response (ABR) thresholds in the 8, 16, and 32 kHz frequency bands, the amplitude and latency of the ABR wave I, reflecting ribbon synapse functions, were abnormal in D-gal-treated mice compared to control mice. We also found that 8-hydroxy-2-deoxyguanosine, a marker of oxidative DNA damage, was significantly increased in mitochondria of cochleae from mice exposed to D-gal-induced aging in comparison to control mice. Moreover, D-gal administration increased the levels of H2O2 and mitochondrial 3860-bp common deletion, and decreased superoxide dismutase activity and ATP production in the cochlea. Furthermore, compared with control mice, the protein levels of NADPH oxidase 2 and uncoupling protein 2 were significantly increased in the cochlea of D-gal-treated mice. Taken together, these findings support that the cochlear ribbon synapse is the primary insult site in the early stage of presbycusis, and mitochondrial oxidative damage and subsequent dysfunctions might be responsible for this insult.


Assuntos
Envelhecimento/metabolismo , Cóclea/fisiopatologia , Galactose/farmacologia , Sinapses/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sinapses/efeitos dos fármacos
15.
J Vis Exp ; (147)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132058

RESUMO

Cochlear inner hair cells (IHCs) transmit acoustic signals to spiral ganglion neurons (SGNs) through ribbon synapses. Several experimental studies have indicated that hair cell synapses may be the initial targets in sensorineural hearing loss (SNHL). Such studies have proposed the concept of cochlear "synaptopathy", which refers to alterations in ribbon synapse number, structure, or function that result in abnormal synaptic transmission between IHCs and SGNs. While cochlear synaptopathy is irreversible, it does not affect the hearing threshold. In noise-induced experimental models, restricted damage to IHC synapses in select frequency regions is employed to identify the environmental factors that specifically cause synaptopathy, as well as the physiological consequences of disturbing this inner ear circuit. Here, we present a protocol for analyzing cochlear synaptic morphology and function at a specific frequency region in adult mice. In this protocol, cochlear localization of specific frequency regions is performed using place-frequency maps in conjunction with cochleogram data, following which the morphological characteristics of ribbon synapses are evaluated via synaptic immunostaining. The functional status of ribbon synapses is then determined based on the amplitudes of auditory brainstem response (ABR) wave I. The present report demonstrates that this approach can be used to deepen our understanding of the pathogenesis and mechanisms of synaptic dysfunction in the cochlea, which may aid in the development of novel therapeutic interventions.


Assuntos
Cóclea/anatomia & histologia , Cóclea/fisiologia , Sinapses/fisiologia , Animais , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Audição/fisiologia , Masculino , Camundongos Endogâmicos C57BL
16.
Neuroscience ; 408: 31-45, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946875

RESUMO

Tinnitus is thought to be triggered by aberrant neural activity in the central auditory pathway and is often accompanied by comorbidities of emotional distress and anxiety, which imply maladaptive functional connectivity to limbic structures, such as the amygdala and hippocampus. Tinnitus patients with normal audiograms can also have accompanying anxiety and depression, clinically. To test the role of functional connectivity between the central auditory pathway and limbic structures in patients with tinnitus with normal audiograms, we developed a murine noise-induced tinnitus model with a temporary threshold shift (TTS). Tinnitus mice exhibited reduced auditory brainstem response wave I amplitude, and an enhanced wave IV amplitude and wave IV/I amplitude ratio, as compared with control and non-tinnitus mice. Resting-state functional magnetic resonance imaging (fMRI) was used to identify abnormal connectivity of the amygdala and hippocampus and to determine the relationship with tinnitus characteristics. We found increased fMRI responses with amplitude of low-frequency fluctuation (ALFF) in the auditory cortex and decreased ALFF in the amygdala and hippocampus at day 1, but decreased ALFF in the auditory cortex and increased ALFF in the amygdala at day 28 post-noise exposure in tinnitus mice. Decreased functional connectivity between auditory brain regions and limbic structures was demonstrated at day 28 in tinnitus mice. Therefore, aberrant neural activities in tinnitus mice with TTS involved not only the central auditory pathway, but also limbic structures, and there was maladaptive functional connectivity between the central auditory pathway and limbic structures, such as the amygdala and hippocampus.


Assuntos
Córtex Auditivo/fisiopatologia , Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Sistema Límbico/fisiopatologia , Neurônios/fisiologia , Zumbido/fisiopatologia , Estimulação Acústica , Animais , Córtex Auditivo/diagnóstico por imagem , Vias Auditivas/diagnóstico por imagem , Testes Auditivos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Zumbido/diagnóstico por imagem
17.
Neuroscience ; 406: 345-355, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30742960

RESUMO

Conductive hearing loss is a prevalent condition globally. It remains unclear whether conductive hearing loss that occurs during early development disrupts auditory peripheral systems. In this study, a mouse model of conductive auditory deprivation (CAD) was achieved using external auditory canal closure on postnatal day 12, which marks the onset of external ear canal opening. Short-term (2 weeks) and long-term (6 weeks) deprivations involving external ear canal closure were conducted. Mice were examined immediately, 4 weeks, and 8 weeks after deprivation. Short-term deprivation induced reversible auditory brainstem response (ABR) threshold and latencies of ABR wave I, whereas long-term deprivation caused irreversible ABR thresholds and latencies of ABR wave I. Complete recovery of ribbon synapses and latencies of ABR wave I was observed in the short-term group. In contrast, we observed irreversible ABR thresholds, latencies of ABR wave I, and quantity of ribbon synapses in the long-term deprivation group. Positive 8-hydroxy-2'-deoxyguanosine signals were noted in cochlear hair cells in the long-term group, suggesting that long-term auditory deprivation could disrupt auditory maturation via mitochondrial damage in cochlear hair cells. Conversely, no significant changes in cellular morphology were observed in cochlear hair cells and spiral ganglion cells in either short- or long-term groups. Collectively, our findings suggest that long-term conductive hearing deprivation during early stages of auditory development can cause significant and irreversible disruption that persists into adulthood.


Assuntos
Limiar Auditivo/fisiologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Audição/fisiologia , Camundongos Endogâmicos C57BL , Gânglio Espiral da Cóclea/fisiopatologia , Sinapses/fisiologia , Tempo
18.
Neurochem Int ; 124: 31-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578839

RESUMO

Presbycusis has become a common sensory deficit in humans. Oxidative damage to mitochondrial DNA and mitochondrial dysfunction is strongly associated with the aging of the auditory system. A previous study established a mimetic rat model of aging using D-galactose (D-gal) and first reported that NADPH oxidase-dependent mitochondrial oxidative damage and apoptosis in the ventral cochlear nucleus (VCN) might contribute to D-gal-induced central presbycusis. In this study, we investigated the effects of apocynin, an NADPH oxidase inhibitor, on mitochondrial dysfunction and mitochondria-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Our data showed that apocynin decreased NADPH oxidase activity, H2O2 levels, mitochondrial DNA common deletion, and 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity in the VCN of D-gal-induced aging model in rats. Moreover, apocynin also decreased the protein levels of phospho-p47phox (p-p47phox), tumor necrosis factor alpha (TNFα), and uncoupling protein 2 (UCP2) in the VCN of D-gal-induced aging model in rats. Meanwhile, apocynin alleviated mitochondrial ultrastructure damage and enhanced ATP production and mitochondrial membrane potential (MMP) levels in the VCN of D-gal-induced aging model in rats. Furthermore, apocynin inhibited cytochrome c (Cyt c) translocation from mitochondria to the cytoplasm and suppressed caspase 3-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Consequently, our findings suggest that neuronal survival promoted by an NADPH oxidase inhibitor is a potentially effective method to enhance the resistance of neurons to central presbycusis.


Assuntos
Acetofenonas/farmacologia , Envelhecimento/efeitos dos fármacos , Núcleo Coclear/efeitos dos fármacos , Galactose/toxicidade , Mitocôndrias/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Envelhecimento/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Núcleo Coclear/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Vis Exp ; (135)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29889202

RESUMO

Local delivery of therapeutic drugs into the inner ear is a promising therapy for inner ear diseases. Injection through semicircular canals (canalostomy) has been shown to be a useful approach to local drug delivery into the inner ear. The goal of this article is to describe, in detail, the surgical techniques involved in canalostomy in both adult and neonatal mice. As indicated by fast-green dye and adeno-associated virus serotype 8 with the green fluorescent protein gene, the canalostomy facilitated broad distribution of injected reagents in the cochlea and vestibular end-organs with minimal damage to hearing and vestibular function. The surgery was successfully implemented in both adult and neonatal mice; indeed, multiple surgeries could be performed if required. In conclusion, canalostomy is an effective and safe approach to drug delivery into the inner ears of adult and neonatal mice and may be used to treat human inner ear diseases in the future.


Assuntos
Cóclea/cirurgia , Sistemas de Liberação de Medicamentos/métodos , Orelha Interna/metabolismo , Adulto , Animais , Humanos , Camundongos
20.
Acta Otolaryngol ; 138(1): 25-30, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28949268

RESUMO

OBJECTIVE: To investigate whether there are more quantitative pre-synaptic ribbons formed in the cochlear region corresponding to middle-frequency in cochlea of mice. METHODS: Counts of pre-synaptic ribbons were performed using immunostaining and laser confocal microscopy. Hearing thresholds and function of ribbon synapses were estimated by auditory brain response (ABR) and compound action potential (CAP). Cochlear mapping has been achieved to match the frequencies and corresponding regions along the cochlear spiral. RESULTS: The number of pre-synaptic ribbons in per inner hair cell (IHC) has been found to increase gradually from the base turn, the maximal quantity appeared at the region of 50-70% from the apex. Next, ABR thresholds showed that there was the lowest ABR threshold in the frequency around 8-16 kHz, corresponding to the region of 50-70% from the apex according to the cochlear mapping. Further, CAP amplitudes were estimated, and the maximal value identified at the same frequency (8-16 kHz). CONCLUSIONS: Maximal number of pre-synaptic ribbons is formed in the cochlear region of middle frequency in mice, coupling with the lowest ABR threshold and highest CAP amplitudes. Our study shows that the middle frequency (8-16 kHz) could be the most sensitive region to sound stimuli in mice.


Assuntos
Cóclea/inervação , Células Ciliadas Auditivas Internas/fisiologia , Sinapses , Estimulação Acústica , Potenciais de Ação , Animais , Limiar Auditivo , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Endogâmicos C57BL , Som , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...