Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824231

RESUMO

The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.

2.
Neurosci Bull ; 39(10): 1533-1543, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37014553

RESUMO

Alzheimer's disease (AD) is associated with the impairment of white matter (WM) tracts. The current study aimed to verify the utility of WM as the neuroimaging marker of AD with multisite diffusion tensor imaging datasets [321 patients with AD, 265 patients with mild cognitive impairment (MCI), 279 normal controls (NC)], a unified pipeline, and independent site cross-validation. Automated fiber quantification was used to extract diffusion profiles along tracts. Random-effects meta-analyses showed a reproducible degeneration pattern in which fractional anisotropy significantly decreased in the AD and MCI groups compared with NC. Machine learning models using tract-based features showed good generalizability among independent site cross-validation. The diffusion metrics of the altered regions and the AD probability predicted by the models were highly correlated with cognitive ability in the AD and MCI groups. We highlighted the reproducibility and generalizability of the degeneration pattern of WM tracts in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Reprodutibilidade dos Testes , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Encéfalo/diagnóstico por imagem
3.
EBioMedicine ; 89: 104455, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758481

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease associated with widespread disruptions in intrinsic local specialization and global integration in the functional system of the brain. These changes in integration may further disrupt the global signal (GS) distribution, which might represent the local relative contribution to global activity in functional magnetic resonance imaging (fMRI). METHODS: fMRI scans from a discovery dataset (n = 809) and a validated dataset (n = 542) were used in the analysis. We investigated the alteration of GS topography using the GS correlation (GSCORR) in patients with mild cognitive impairment (MCI) and AD. The association between GS alterations and functional network properties was also investigated based on network theory. The underlying mechanism of GSCORR alterations was elucidated using imaging-transcriptomics. FINDINGS: Significantly increased GS topography in the frontal lobe and decreased GS topography in the hippocampus, cingulate gyrus, caudate, and middle temporal gyrus were observed in patients with AD (Padj < 0.05). Notably, topographical GS changes in these regions correlated with cognitive ability (P < 0.05). The changes in GS topography also correlated with the changes in functional network segregation (ρ = 0.5). Moreover, the genes identified based on GS topographical changes were enriched in pathways associated with AD and neurodegenerative diseases. INTERPRETATION: Our findings revealed significant changes in GS topography and its molecular basis, confirming the informative role of GS in AD and further contributing to the understanding of the relationship between global and local neuronal activities in patients with AD. FUNDING: Beijing Natural Science Funds for Distinguished Young Scholars, China; Fundamental Research Funds for the Central Universities, China; National Natural Science Foundation, China.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Mapeamento Encefálico , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos
4.
Biol Psychiatry ; 93(9): 759-769, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137824

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder with significant heterogeneity. Different AD phenotypes may be associated with specific brain network changes. Uncovering disease heterogeneity by using functional networks could provide insights into precise diagnoses. METHODS: We investigated the subtypes of AD using nonnegative matrix factorization clustering on the previously identified 216 resting-state functional connectivities that differed between AD and normal control subjects. We conducted the analysis using a discovery dataset (n = 809) and a validated dataset (n = 291). Next, we grouped individuals with mild cognitive impairment according to the model obtained in the AD groups. Finally, the clinical measures and brain structural characteristics were compared among the subtypes to assess their relationship with differences in the functional network. RESULTS: Individuals with AD were clustered into 4 subtypes reproducibly, which included those with 1) diffuse and mild functional connectivity disruption (subtype 1), 2) predominantly decreased connectivity in the default mode network accompanied by an increase in the prefrontal circuit (subtype 2), 3) predominantly decreased connectivity in the anterior cingulate cortex accompanied by an increase in prefrontal cortex connectivity (subtype 3), and 4) predominantly decreased connectivity in the basal ganglia accompanied by an increase in prefrontal cortex connectivity (subtype 4). In addition to these differences in functional connectivity, differences between the AD subtypes were found in cognition, structural measures, and cognitive decline patterns. CONCLUSIONS: These comprehensive results offer new insights that may advance precision medicine for AD and facilitate strategies for future clinical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Biomarcadores
5.
BMC Bioinformatics ; 23(Suppl 6): 280, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836122

RESUMO

BACKGROUND: The dynamic functional connectivity (dFC) has been used successfully to investigate the dysfunction of Alzheimer's disease (AD) patients. The reconfiguration intensity of nodal dFC, which means the degree of alteration between FCs at different time scales, could provide additional information for understanding the reconfiguration of brain connectivity. RESULTS: In this paper, we introduced a feature named time distance nodal connectivity diversity (tdNCD), and then evaluated the network reconfiguration intensity in every specific brain region in AD using a large multicenter dataset (N = 809 from 7 independent sites). Our results showed that the dysfunction involved in three subnetworks in AD, including the default mode network (DMN), the subcortical network (SCN), and the cerebellum network (CBN). The nodal tdNCD inside the DMN increased in AD compared to normal controls, and the nodal dynamic FC of the SCN and the CBN decreased in AD. Additionally, the classification analysis showed that the classification performance was better when combined tdNCD and FC to classify AD from normal control (ACC = 81%, SEN = 83.4%, SPE = 80.6%, and F1-score = 79.4%) than that only using FC (ACC = 78.2%, SEN = 76.2%, SPE = 76.5%, and F1-score = 77.5%) with a leave-one-site-out cross-validation. Besides, the performance of the three classes classification was improved from 50% (only using FC) to 53.3% (combined FC and tdNCD) (macro F1-score accuracy from 46.8 to 48.9%). More importantly, the classification model showed significant clinically predictive correlations (two classes classification: R = -0.38, P < 0.001; three classes classification: R = -0.404, P < 0.001). More importantly, several commonly used machine learning models confirmed that the tdNCD would provide additional information for classifying AD from normal controls. CONCLUSIONS: The present study demonstrated dynamic reconfiguration of nodal FC abnormities in AD. The tdNCD highlights the potential for further understanding core mechanisms of brain dysfunction in AD. Evaluating the tdNCD FC provides a promising way to understand AD processes better and investigate novel diagnostic brain imaging biomarkers for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2923-2927, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891857

RESUMO

Alzheimer's disease (AD) is a typical neurodegenerative disease that is associated with cognitive decline, memory loss, and functional disconnection. Diffusion tensor imaging (DTI) has been widely used to investigate the integrity and degeneration of white matter in AD. In this study, with one of the world's largest DTI biobanks (865 individuals), we aim to explore the diagnosis utility and stability of tractbased features (extracted by automated fiber quantification (AFQ) pipeline) in AD. First, we studied the clinical association of tract-based features by detecting AD-associated alterations of diffusion properties along fiber bundles. Then, a binary classification experiment between AD and normal controls was performed using tract-based diffusion properties as features and support vector machine (SVM) as a classifier with an independent site cross-validation strategy. The average accuracy of 77.90% (the highest was 88.89%) showed that white matter properties as biomarkers had a relatively stable role in the clinical diagnosis of AD.Clinical Relevance- White matter characteristics are valid and robust biomarkers of AD, which have high accuracy and generalizability in the AD diagnosis in a large multi-site dataset.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Substância Branca , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico , Imagem de Tensor de Difusão , Humanos , Substância Branca/diagnóstico por imagem
7.
Brain Imaging Behav ; 15(1): 255-265, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125614

RESUMO

Vascular cognitive impairment, no dementia (VCIND) refers to cognitive deficits associated with underlying vascular causes that are insufficient to confirm a diagnosis of dementia. The default mode network (DMN) is a large-scale brain network of interacting brain regions involved in attention, working memory and executive function. The role of DMN white matter integrity in cognitive deficits of VCIND patients is unclear. Using diffusion tensor imaging (DTI), this study was carried out to investigate white matter microstructural changes in the DMN in VCIND patients and their contributions to cognitive deficits. Thirty-one patients with subcortical VCIND and twenty-two healthy elderly subjects were recruited. All patients underwent neuropsychological assessments and DTI examination. Voxel-based analyses were performed to extract fractional anisotropy (FA) and mean diffusivity (MD) measures in the DMN. Compared with the healthy elderly subjects, patients diagnosed with subcortical VCIND presented with abnormal white matter integrity in several key hubs of the DMN. The severity of damage in the white matter microstructure in the DMN significantly correlated with cognitive dysfunction. Mediation analyses demonstrated that DTI values could account for attention, executive and language impairments, and partly mediated global cognitive dysfunction in the subcortical VCIND patients. DMN integrity is significantly impaired in subcortical VCIND patients. The disrupted DMN connectivity could explain the attention, language and executive dysfunction, which indicates that the white matter integrity of the DMN may be a neuroimaging marker for VCIND.


Assuntos
Disfunção Cognitiva , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Rede de Modo Padrão , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...