Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124642, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38870696

RESUMO

A mid-infrared quantum cascade laser (Mid-IR QCL) coupled with a Single Pass Cell and a Multi Pass Cell, was utilized to measure ammonia (NH3) absorption spectroscopic parameters and determine NH3 impurities toward three emerging applications. We for the first time measured the pressure broadening coefficients perturbed by Air, O2, N2, He, CO2, CH4, and H2 and the line intensities of six NH3 transition lines near 1084.6 cm-1. The measured NH3-He, NH3-Air, and NH3-CO2 broadening coefficients align with HITRAN database, while NH3-H2 coefficients exhibit a maximum discrepancy of 46 %. Deviations between the measured line intensities and HITRAN database are minimal. Nevertheless, the uncertainties of line intensities have been significantly reduced from 20 % in HITRAN to below 3 %. The newly measured line parameters are utilized to address NH3 impurity requirements outlined in CCUS (ISO 27913:2016), Biomethane (EN 16723:2016), and H2 (ISO 14687:2019) standards. Based on the concept of optical gas standard (OGS), the NH3 impurity detection requirements in all three standards have been fulfilled with an uncertainty of 1.35 %. The precision of the NH3-OGS is 800 part per trillion (ppt) with an integration time of 100 s. The repeatability of the NH3-OGS is 130 ppt for a continuous measurement time of 48 min. Notably, the NH3-OGS effectively addresses the highly nonlinear adsorption-desorption dynamics, underscoring the potential of OGS as a calibration-free and SI-traceable metrological gas analysis instrument.

2.
Analyst ; 146(4): 1402-1413, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404022

RESUMO

Biomethane is a renewable energy gas with great potential to contribute to the diversification and greening of the natural gas supply. Ideally, biomethane can directly be injected into the natural gas grid system. For grid injection, specifications such as those in EN 16723-1 shall be met. One of the impurities to be monitored is hydrogen chloride (HCl). To assess conformity with the specification for HCl, accurate and reliable test methods are required. Here, we report the development of three novel test methods, based on a variety of laser absorption spectroscopy techniques (Direct absorption spectroscopy-DAS and wavelength modulation spectroscopy-WMS) and ion-exchange chromatography, for the measurement of HCl in biomethane. Gas mixtures of HCl in biomethane were used to demonstrate the performance of the spectroscopic systems in the nmol mol-1 to low µmol mol-1 ranges, achieving uncertainties in the 4% range, k = 2. For ion-exchange chromatography analysis, HCl was first collected on an alkali-impregnated quartz fiber filter. The analysis was performed according to ISO 21438-2 and validated using synthetic biomethane spiked with HCl. The relative expanded uncertainties for the ion exchange chromatography HCl measurements are in the 10-37% range, k = 2. The results presented for the 3 test methods demonstrate that the respective methods can be used for HCl conformity assessment in biomethane.

3.
Appl Spectrosc ; 72(6): 853-862, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29264926

RESUMO

The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

4.
Appl Opt ; 56(11): E84-E93, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414334

RESUMO

We report on an interband cascade laser (ICL)-absorption spectrometer for absolute, calibration-free, atmospheric CO amount fraction measurements, addressing direct traceability of the results. The system combines first-principles direct tunable diode laser absorption spectroscopy (dTDLAS) with a metrological validation. Using a multipath cell with 76 m path length, our detection limit is 0.5 nmol/mol at Δt=14 s. The system is highly linear (slope: 0.999±0.008) in the amount fraction range of 0.1-1000 µmol/mol and thus is interesting for industrial as well as environmental applications. The sensor repeatability at 300 nmol/mol is 0.06 nmol/mol (with Δt=10 min). The sensor's absolute response is in excellent agreement with the gravimetric values of a set of primary gas standards used to test the sensor accuracy. The relative expanded uncertainty (k=2) of the measured CO amount fraction is 2.8%. Due to this performance and the calibration-free approach, the spectrometer may be used as an optical transfer standard (OTS) if gas standards are for whatever reason not available or applicable, e.g., for airborne instruments. Our dTDLAS approach has shown excellent stability and accuracy in H2O detection [Appl. Phys. B116, 883 (2014)APPCDL0721-726910.1007/s00340-014-5775-4] even when compared to primary standards. We therefore deduce that the ICL spectrometer (after its adaptation to field conditions, similar to our H2O spectrometers) has good potential to meet the 2 nmol/mol compatibility goal stated by the World Meteorological Organization for atmospheric CO measurements, and serve as an OTS which does not need frequent calibrations using reference gases.

5.
Anal Chem ; 88(7): 3754-60, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26938713

RESUMO

Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.


Assuntos
Potássio/análise , Espectrofotometria Atômica/métodos , Lasers Semicondutores
6.
Opt Express ; 23(12): 16492-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193620

RESUMO

A calibration-free scanned wavelength modulation spectroscopy scheme requiring minimal laser characterization is presented. Species concentration and temperature are retrieved simultaneously from a single fit to a group of 2f/1f-WMS lineshapes acquired in one laser scan. The fitting algorithm includes a novel method to obtain the phase shift between laser intensity and wavelength modulation, and allows for a wavelength-dependent modulation amplitude. The scheme is demonstrated by detection of H(2)O concentration and temperature in atmospheric, premixed CH(4)/air flat flames using a sensor operating near 1.4 µm. The detection sensitivity for H(2)O at 2000 K was 4 × 10(-5) cm(-1) Hz(-1/2), and temperature was determined with a precision of 10 K and absolute accuracy of ~50 K. A parametric study of the dependence of H(2)O and temperature on distance to the burner and total fuel mass flow rate shows good agreement with 1D simulations.

7.
Opt Express ; 22(11): 13889-95, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921580

RESUMO

We demonstrate near-infrared cavity-enhanced optical frequency comb spectroscopy of water in a premixed methane/air flat flame. The detection system is based on an Er:fiber femtosecond laser, a high finesse optical cavity containing the flame, and a fast-scanning Fourier transform spectrometer (FTS). High absorption sensitivity is obtained by the combination of a high-bandwidth two-point comb-cavity lock and auto-balanced detection in the FTS. The system allows recording high-temperature water absorption spectra with a resolution of 1 GHz and a bandwidth of 50 nm in an acquisition time of 0.4 s, with absorption sensitivity of 4.2 × 10(-9) cm(-1) Hz(-1/2) per spectral element.

8.
Analyst ; 138(21): 6372-9, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24049768

RESUMO

Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA