Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5729, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459045

RESUMO

Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Filogenia , Apoptose/genética , Caspases/genética , Caspases/metabolismo , Mamíferos/metabolismo
2.
Evol Lett ; 8(2): 267-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525035

RESUMO

Apoptosis is regulated cell death that depends on caspases. A specific initiator caspase is involved upstream of each apoptotic signaling pathway. Characterized in nematode, fly, and mammals, intrinsic apoptosis is considered to be ancestral, conserved among animals, and depends on shared initiators: caspase-9, Apaf-1 and Bcl-2. However, the biochemical role of mitochondria, the pivotal function of cytochrome c and the modality of caspase activation remain highly heterogeneous and hide profound molecular divergence among apoptotic pathways in animals. Uncovering the phylogenetic history of apoptotic actors, especially caspases, is crucial to shed light on the evolutionary history of intrinsic apoptosis. Here, we demonstrate with phylogenetic analyses that caspase-9, the fundamental key of intrinsic apoptosis, is deuterostome-specific, while caspase-2 is ancestral to bilaterians. Our analysis of Bcl-2 and Apaf-1 confirms heterogeneity in functional organization of apoptotic pathways in animals. Our results support emergence of distinct intrinsic apoptotic pathways during metazoan evolution.

4.
BMC Mol Cell Biol ; 22(1): 51, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615460

RESUMO

BACKGROUND: Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS: We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION: We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.


Assuntos
Ciona intestinalis , Transcriptoma , Animais , Apoptose/genética , Caspases/genética , Caspases/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Metamorfose Biológica/genética
5.
Dev Dyn ; 250(12): 1739-1758, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34036636

RESUMO

BACKGROUND: Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied. RESULTS: We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp. CONCLUSION: Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.


Assuntos
Hidrozoários/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Animais , Apoptose/fisiologia , Polaridade Celular , Proliferação de Células/fisiologia , Larva , Estágios do Ciclo de Vida/fisiologia , Células-Tronco/fisiologia
6.
Zootaxa ; 4942(2): zootaxa.4942.2.2, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33757064

RESUMO

A morphologically distinguished and isolated cavernicolous trechine beetle belonging to the isotopic Duvalius lineage was discovered in Dinarids, Western Bosnia, in hypogean environment, in the cave Mracna Pecina. Duvalius (Neoduvalius) lohaji n. sp., is described, illustrated and compared with the other Duvalius species of the Dinaric range, especially with Neoduvalius taxa. In addition, taxonomical considerations about Duvalius-related genera that exhibit aphaenopsian morphology are given.


Assuntos
Besouros , Distribuição Animal , Animais , Bósnia e Herzegóvina , Cavernas
7.
Zootaxa ; 4646(1): zootaxa.4646.1.3, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31717026

RESUMO

Description and illustration of two new Oxytrechus species from the páramos of the northern Ecuadorian Andes. O. chioriae n. sp. is distributed at high altitude on the Chimborazo volcano on the Occidental Cordillera; O. cayambeensis n. sp. is located on the Oriental Cordillera and colonizes the Cayambe volcano. The two species are compared to other Ecuadorian species and some considerations about the distribution pattern of South-American species of Oxytrechus are proposed.


Assuntos
Besouros , Animais , Equador
8.
Nat Ecol Evol ; 3(5): 801-810, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858591

RESUMO

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.


Assuntos
Hidrozoários , Animais , Evolução Molecular , Genoma
9.
Curr Biol ; 27(7): 958-967, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318975

RESUMO

Resolving the early diversification of animal lineages has proven difficult, even using genome-scale datasets. Several phylogenomic studies have supported the classical scenario in which sponges (Porifera) are the sister group to all other animals ("Porifera-sister" hypothesis), consistent with a single origin of the gut, nerve cells, and muscle cells in the stem lineage of eumetazoans (bilaterians + ctenophores + cnidarians). In contrast, several other studies have recovered an alternative topology in which ctenophores are the sister group to all other animals (including sponges). The "Ctenophora-sister" hypothesis implies that eumetazoan-specific traits, such as neurons and muscle cells, either evolved once along the metazoan stem lineage and were then lost in sponges and placozoans or evolved at least twice independently in Ctenophora and in Cnidaria + Bilateria. Here, we report on our reconstruction of deep metazoan relationships using a 1,719-gene dataset with dense taxonomic sampling of non-bilaterian animals that was assembled using a semi-automated procedure, designed to reduce known error sources. Our dataset outperforms previous metazoan gene superalignments in terms of data quality and quantity. Analyses with a best-fitting site-heterogeneous evolutionary model provide strong statistical support for placing sponges as the sister-group to all other metazoans, with ctenophores emerging as the second-earliest branching animal lineage. Only those methodological settings that exacerbated long-branch attraction artifacts yielded Ctenophora-sister. These results show that methodological issues must be carefully addressed to tackle difficult phylogenetic questions and pave the road to a better understanding of how fundamental features of animal body plans have emerged.


Assuntos
Evolução Biológica , Genoma , Invertebrados/classificação , Filogenia , Poríferos/genética , Vertebrados/classificação , Animais , Genômica/métodos , Invertebrados/genética , Poríferos/classificação , Vertebrados/genética
10.
Zootaxa ; 4205(6): zootaxa.4205.6.1, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27988546

RESUMO

The species belonging to the trechine genus Adriaphaenops Noesske, 1928 are studied. As a result, seven currently known and five newly described species are recognized. Morphological characters of the habitus (especially the shape of head and pronotum) as well as male genitalia are widely used to delimit the species. The following new species are described: A. albanicus sp. nov. (Albania, Shkodër, Boga, Thatë Mts.), A. jasminkoi sp. nov. (Bosnia & Hercegovina, Nevesinje, Novakova pecina cave), A. mlejneki sp. nov. (Montenegro, Gornje Stravce, Kucke planine Mts.), A. njegosiensis sp. nov. (Montenegro, Cetinje, Cetinjska pecina cave) and A.rumijaensis sp. nov. (Montenegro, Virpazar, Rumija Mts.). Lectotype for A. stirni (Pretner, 1959) is designated. Data on the distribution and ecology of new taxa, complemented with descriptions of the type localities are provided. Key to the identification of all twelve Adriaphaenops species, as well as a key of all hitherto known aphaenopsoid Trechini genera from Dinarides are also given.


Assuntos
Besouros/anatomia & histologia , Besouros/classificação , Distribuição Animal , Animais , Bósnia e Herzegóvina , Cavernas , Besouros/fisiologia , Feminino , Masculino , Montenegro , Especificidade da Espécie
11.
Zoology (Jena) ; 118(2): 102-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25440713

RESUMO

Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a "cydippid-like" ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former "Cydippida") is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the "Cydippida" family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of taxonomic sampling.


Assuntos
Ctenóforos/classificação , Ctenóforos/genética , DNA Espaçador Ribossômico/genética , DNA Ribossômico/genética , Filogenia , Animais , Dados de Sequência Molecular
12.
PLoS One ; 8(12): e84363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391946

RESUMO

Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/ß-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular ß-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.


Assuntos
Padronização Corporal , Proliferação de Células , Ctenóforos/fisiologia , Regulação da Expressão Gênica/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Via de Sinalização Wnt/fisiologia , Animais , Clonagem Molecular , Biologia Computacional , Ctenóforos/ultraestrutura , França , Perfilação da Expressão Gênica , Hibridização In Situ , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
13.
BMC Evol Biol ; 12: 107, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747595

RESUMO

BACKGROUND: Myosin II (or Myosin Heavy Chain II, MHCII) is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa) and striated muscle cells (MHCIIb). Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. RESULTS: We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa) has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa…) and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. CONCLUSION: MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2) has retained MHCIIa-like expression features furthermore suggests that muscular expression of the other paralogue, PpiMHCIIb1, was the result of neofunctionalisation within the ctenophore lineage, making independent origin of ctenophore muscle cells a likely option.


Assuntos
Ctenóforos/genética , Evolução Molecular , Duplicação Gênica , Miosina Tipo II/genética , Filogenia , Animais , Ctenóforos/metabolismo , Células Musculares/metabolismo , Músculos/metabolismo , Análise de Sequência de DNA , Células-Tronco/metabolismo
14.
Evodevo ; 2: 12, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21631916

RESUMO

BACKGROUND: The Sox genes are important regulators of animal development belonging to the HMG domain-containing class of transcription factors. Studies in bilaterian models have notably highlighted their pivotal role in controlling progression along cell lineages, various Sox family members being involved at one side or the other of the critical balance between self-renewing stem cells/proliferating progenitors, and cells undergoing differentiation. RESULTS: We have investigated the expression of 10 Sox genes in the cnidarian Clytia hemisphaerica. Our phylogenetic analyses allocated most of these Clytia genes to previously-identified Sox groups: SoxB (CheSox2, CheSox3, CheSox10, CheSox13, CheSox14), SoxC (CheSox12), SoxE (CheSox1, CheSox5) and SoxF (CheSox11), one gene (CheSox15) remaining unclassified. In the planula larva and in the medusa, the SoxF orthologue was expressed throughout the endoderm. The other genes were expressed either in stem cells/undifferentiated progenitors, or in differentiating (-ed) cells with a neuro-sensory identity (nematocytes or neurons). In addition, most of them were expressed in the female germline, with their maternal transcripts either localised to the animal region of the egg, or homogeneously distributed. CONCLUSIONS: Comparison with other cnidarians, ctenophores and bilaterians suggest ancient evolutionary conservation of some aspects of gene expression/function at the Sox family level: (i) many Sox genes are expressed in stem cells and/or undifferentiated progenitors; (ii) other genes, or the same under different contexts, are associated with neuro-sensory cell differentiation; (iii) Sox genes are commonly expressed in the germline; (iv) SoxF group genes are associated with endodermal derivatives. Strikingly, total lack of correlation between a given Sox orthology group and expression/function in stem cells/progenitors vs. in differentiating cells implies that Sox genes can easily switch from one side to the other of the balance between these fundamental cellular states in the course of evolution.

15.
J Exp Zool B Mol Dev Evol ; 316B(3): 171-87, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21462312

RESUMO

Ctenophores are non-bilaterian animals sharing with cnidarians and bilaterians the presence of sensory receptors, nerve cells, and synapses, absent in placozoans and sponges. Although recent immunofluorescence studies have renewed our knowledge of cnidarian neuro-anatomy, ctenophores have been much less investigated despite their importance to understanding the origin and early evolution of the nervous system. In this study, the neuro-anatomy of the ctenophore Pleurobrachia pileus (Müller, 1776) was explored by whole-mount fluorescent antibody staining using antibodies against tyrosylated -tubulin, FMRFamide, and vasopressin. We describe the morphology of nerve nets and their local specializations, and the organization of the aboral neuro-sensory complex comprising the apical organ and polar fields. Two distinct nerve nets are distinguished: a mesogleal nerve net, loosely organized throughout body mesoglea, and a much more compact "nerve net" with polygonal meshes in the ectodermal epithelium. The latter is organized as a plexus of short nerve cords. This epithelial nervous system contains distinct sub-populations of dispersed FMRFamide and vasopressin immunoreactive nerve cells. In the aboral neuro-sensory complex, our most significant observations include specialized nerve nets underlying the apical organ and polar fields, a tangential bundle of actin-rich fibers (interpreted as a muscle) within the polar fields, and distinct groups of neurons labeled by anti-FMRFamide and anti-vasopressin antibodies, within the apical organ floor. These results are discussed in a comparative perspective.


Assuntos
Ctenóforos/anatomia & histologia , Ctenóforos/fisiologia , Imunofluorescência , Fenômenos Fisiológicos do Sistema Nervoso/imunologia , Sistema Nervoso/anatomia & histologia , Animais
16.
Dev Biol ; 350(1): 183-97, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21036163

RESUMO

Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.


Assuntos
Ctenóforos/citologia , Ctenóforos/embriologia , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Ctenóforos/genética , Redes Reguladoras de Genes , Variação Genética , Células Germinativas/enzimologia , Células-Tronco/citologia
17.
Trends Genet ; 26(4): 154-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20129693

RESUMO

Recent thought on genome evolution has focused on the creation of new genes and changes in regulatory mechanisms while ignoring the role of selective gene loss in shaping genomes. Using data from two cnidarians, the jellyfish Clytia and the coral Acropora, we examined the relative significance of new 'taxonomically restricted' genes and selectively retained ancestral genes in enabling the evolution of novel traits. Consistent with its more complex life-cycle, the proportion of novel genes identified in Clytia was higher than that in the 'polyp only' cnidarians Nematostella and Hydra, but each of these cnidarians has retained a proportion of ancestral genes not present in the other two. The ubiquity and near-stochastic nature of gene loss can explain the discord between patterns of gene distribution and taxonomy.


Assuntos
Cnidários/genética , Evolução Molecular , Animais , Antozoários/genética , Antozoários/fisiologia , Cnidários/fisiologia , Hidrozoários/genética , Hidrozoários/fisiologia , Cifozoários/genética , Cifozoários/fisiologia
18.
Curr Biol ; 19(8): 706-12, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19345102

RESUMO

The origin of many of the defining features of animal body plans, such as symmetry, nervous system, and the mesoderm, remains shrouded in mystery because of major uncertainty regarding the emergence order of the early branching taxa: the sponge groups, ctenophores, placozoans, cnidarians, and bilaterians. The "phylogenomic" approach [1] has recently provided a robust picture for intrabilaterian relationships [2, 3] but not yet for more early branching metazoan clades. We have assembled a comprehensive 128 gene data set including newly generated sequence data from ctenophores, cnidarians, and all four main sponge groups. The resulting phylogeny yields two significant conclusions reviving old views that have been challenged in the molecular era: (1) that the sponges (Porifera) are monophyletic and not paraphyletic as repeatedly proposed [4-9], thus undermining the idea that ancestral metazoans had a sponge-like body plan; (2) that the most likely position for the ctenophores is together with the cnidarians in a "coelenterate" clade. The Porifera and the Placozoa branch basally with respect to a moderately supported "eumetazoan" clade containing the three taxa with nervous system and muscle cells (Cnidaria, Ctenophora, and Bilateria). This new phylogeny provides a stimulating framework for exploring the important changes that shaped the body plans of the early diverging phyla.


Assuntos
Evolução Biológica , Padronização Corporal , Genômica , Filogenia , Animais , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Poríferos/classificação , Poríferos/genética
19.
PLoS One ; 4(1): e4231, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19156208

RESUMO

BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.


Assuntos
Cnidários/fisiologia , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Animais , Padronização Corporal , Endoderma/metabolismo , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Variação Genética , Modelos Biológicos , Filogenia
20.
J Exp Zool B Mol Dev Evol ; 310(8): 650-67, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18942104

RESUMO

SOX genes encode transcription factors acting in various developmental processes in bilaterian animals, such as stem cell maintenance and the control of specification and differentiation of cell types in a variety of contexts, notably in the developing nervous system. To gain insights into the early evolution of this important family of developmental regulators, we investigated the expression of one subgroup B, two subgroup E, one subgroup F and two divergent SOX genes in the cydippid larva and in the adult of the ctenophore Pleurobrachia pileus. Transcripts of the two unclassified SOX (PpiSOX2/12) were detected in the female germ line and in various populations of putative somatic stem cells/undifferentiated progenitors. The remaining genes had spatially restricted expression patterns in ciliated epithelial cells, notably within neuro-sensory territories. These data are compatible with an ancient involvement of SOX proteins in controlling aspects of stem cell maintenance, cellular differentiation and specification, notably within neuro-sensory epithelia. In addition, the results highlight the complexity of the ctenophore anatomy and suggest that the SOX played an important role in the elaboration of the unique ctenophore body plan during evolution, through multiple gene co-option.


Assuntos
Ctenóforos/genética , Ctenóforos/metabolismo , Evolução Molecular , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Animais , Ctenóforos/anatomia & histologia , Ectoderma/metabolismo , Endoderma/metabolismo , Feminino , Células Germinativas/metabolismo , Larva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...