Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 217: 118383, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460978

RESUMO

Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470-800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5-21.8 × 106 kg/a (kg per year) with contributions of 11.8-20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2-6% of the natural bromoform emissions from marine water, which is estimated to be 385-870 × 106 kg/a.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Humanos , Água do Mar/química , Navios , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Environ Sci Technol ; 56(4): 2718-2728, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077144

RESUMO

The iron(II) oxidation kinetic process was studied at 25 stations in coastal seawater of the Macaronesia region (9 around Cape Verde, 11 around the Canary Islands, and 5 around Madeira). In a physicochemical context, experiments were carried out to study the pseudo-first-order oxidation rate constant (k', min-1) over a range of pH (7.8, 7.9, 8.0, and 8.1) and temperature (10, 15, 20, and 25 °C). Deviations from the calculated kcal' at the same T, pH, and S were observed for most of the stations. The measured t1/2 (ln 2/k', min) values at the 25 stations ranged from 1.82 to 3.47 min (mean 1.93 ± 0.76 min) and for all but two stations were lower than the calculated t1/2 of 3.21 ± 0.2 min. In a biogeochemical context, nutrients and variables associated with the organic matter spectral properties (CDOM and FDOM) were analyzed to explain the observed deviations. The application of a multilinear regression model indicated that k' can be described (R = 0.921 and SEE = 0.064 for pH = 8 and T = 25 °C) from a linear combination of three organic variables, k'OM = kcal' -0.11* TDN + 29.9*bDOM + 33.4*C1humic, where TDN is the total dissolved nitrogen, bDOM is the spectral peak obtained from colored dissolved organic matter (DOM) analysis when protein-like or tyrosine-like components are present, and C1humic is the component associated with humic-like compounds obtained from the parallel factor analysis of the fluorescent DOM. Results show that compounds with N in their structures mainly explain the observed k' increase for most of the samples, although other components could also play a relevant role. Experimentally, k' provides the net result between the compounds that accelerate the process and those that slow it down.


Assuntos
Matéria Orgânica Dissolvida , Água do Mar , Compostos Ferrosos , Cinética , Oxirredução , Água do Mar/química
3.
Environ Sci Process Impacts ; 22(3): 679-707, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163052

RESUMO

The organic bromine compounds bromoform (CHBr3) and dibromomethane (CH2Br2) influence tropospheric chemistry and stratospheric ozone depletion. Their atmospheric abundance is generally related to a common marine source, which is not well characterized. A cruise between the three Macaroenesian Archipelagos of Cape Verde, the Canaries and Madeira revealed that anthropogenic sources increased oceanic CHBr3 emissions significantly close to some islands, especially at the Canaries, while heterotrophic processes in the ocean increased the flux of CH2Br2 from the sea to the atmosphere in the Cape Verde region. As anthropogenic disinfection processes, which release CHBr3 in coastal areas increase, and as more CH2Br2 may be produced from increased heterotrophy in a warming, deoxygenated ocean, both sources could supply higher fractions of stratospheric bromine in the future, with yet unknown consequences for stratospheric ozone.


Assuntos
Atmosfera , Hidrocarbonetos Bromados , Oceanos e Mares , Portugal , Trialometanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...