Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391232

RESUMO

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Assuntos
Mpox , Orthopoxvirus , Varíola , Vírus da Varíola , Animais , Camundongos , Humanos , Nucleosídeos/uso terapêutico , Varíola/tratamento farmacológico , Varíola/prevenção & controle , Modelos Animais de Doenças
2.
BMC Genom Data ; 24(1): 33, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291509

RESUMO

OBJECTIVES: Complex physiological adaptations often involve the coordination of molecular responses across multiple tissues. Establishing transcriptomic resources for non-traditional model organisms with phenotypes of interest can provide a foundation for understanding the genomic basis of these phenotypes, and the degree to which these resemble, or contrast, those of traditional model organisms. Here, we present a one-of-a-kind gene expression dataset generated from multiple tissues of two hibernating brown bears (Ursus arctos). DATA DESCRIPTION: This dataset is comprised of 26 samples collected from 13 tissues of two hibernating brown bears. These samples were collected opportunistically and are typically not possible to attain, resulting in a highly unique and valuable gene expression dataset. In combination with previously published datasets, this new transcriptomic resource will facilitate detailed investigation of hibernation physiology in bears, and the potential to translate aspects of this biology to treat human disease.


Assuntos
Hibernação , Ursidae , Animais , Humanos , Ursidae/genética , Hibernação/genética , Adaptação Fisiológica , Estações do Ano , Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34185679

RESUMO

Environmental factors can promote phenotypic variation through alterations in the epigenome and facilitate adaptation of an organism to the environment. Although hydrogen sulfide is toxic to most organisms, the fish Poecilia mexicana has adapted to survive in environments with high levels that exceed toxicity thresholds by orders of magnitude. Epigenetic changes in response to this environmental stressor were examined by assessing DNA methylation alterations in red blood cells, which are nucleated in fish. Males and females were sampled from sulfidic and nonsulfidic natural environments; individuals were also propagated for two generations in a nonsulfidic laboratory environment. We compared epimutations between the sexes as well as field and laboratory populations. For both the wild-caught (F0) and the laboratory-reared (F2) fish, comparing the sulfidic and nonsulfidic populations revealed evidence for significant differential DNA methylation regions (DMRs). More importantly, there was over 80% overlap in DMRs across generations, suggesting that the DMRs have stable generational inheritance in the absence of the sulfidic environment. This is an example of epigenetic generational stability after the removal of an environmental stressor. The DMR-associated genes were related to sulfur toxicity and metabolic processes. These findings suggest that adaptation of P. mexicana to sulfidic environments in southern Mexico may, in part, be promoted through epigenetic DNA methylation alterations that become stable and are inherited by subsequent generations independent of the environment.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Sulfeto de Hidrogênio/análise , Nascentes Naturais/química , Poecilia/genética , Animais , Feminino , Geografia , Masculino , México , Análise de Componente Principal
4.
G3 (Bethesda) ; 10(9): 3165-3177, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32694196

RESUMO

Schizophrenia is an idiopathic disorder that affects approximately 1% of the human population, and presents with persistent delusions, hallucinations, and disorganized behaviors. Antipsychotics are the standard pharmacological treatment for schizophrenia, but are frequently discontinued by patients due to inefficacy and/or side effects. Chronic treatment with the typical antipsychotic haloperidol causes tardive dyskinesia (TD), which manifests as involuntary and often irreversible orofacial movements in around 30% of patients. Mice treated with haloperidol develop many of the features of TD, including jaw tremors, tongue protrusions, and vacuous chewing movements (VCMs). In this study, we used genetically diverse Collaborative Cross (CC) recombinant inbred inter-cross (RIX) mice to elucidate the genetic basis of antipsychotic-induced adverse drug reactions (ADRs). We performed a battery of behavioral tests in 840 mice from 73 RIX lines (derived from 62 CC strains) treated with haloperidol or placebo in order to monitor the development of ADRs. We used linear mixed models to test for strain and treatment effects. We observed highly significant strain effects for almost all behavioral measurements investigated (P < 0.001). Further, we observed strong strain-by-treatment interactions for most phenotypes, particularly for changes in distance traveled, vertical activity, and extrapyramidal symptoms (EPS). Estimates of overall heritability ranged from 0.21 (change in body weight) to 0.4 (VCMs and change in distance traveled) while the portion attributable to the interactions of treatment and strain ranged from 0.01 (for change in body weight) to 0.15 (for change in EPS). Interestingly, close to 30% of RIX mice exhibited VCMs, a sensitivity to haloperidol exposure, approximately similar to the rate of TD in humans chronically exposed to haloperidol. Understanding the genetic basis for the susceptibility to antipsychotic ADRs may be possible in mouse, and extrapolation to humans could lead to safer therapeutic approaches for schizophrenia.


Assuntos
Antipsicóticos , Discinesia Induzida por Medicamentos , Animais , Antipsicóticos/efeitos adversos , Haloperidol/efeitos adversos , Humanos , Mastigação , Camundongos , Fenótipo
5.
Commun Biol ; 3(1): 243, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404883

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Commun Biol ; 2: 336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531397

RESUMO

Revealing the mechanisms underlying the reversible physiology of hibernation could have applications to both human and animal health as hibernation is often associated with disease-like states. The present study uses RNA-sequencing to reveal the tissue and seasonal transcriptional changes occurring in grizzly bears (Ursus arctos horribilis). Comparing hibernation to other seasons, bear adipose has a greater number of differentially expressed genes than liver and skeletal muscle. During hyperphagia, adipose has more than 900 differentially expressed genes compared to active season. Hibernation is characterized by reduced expression of genes associated with insulin signaling, muscle protein degradation, and urea production, and increased expression within muscle protein anabolic pathways. Across all three tissues we find a subset of shared differentially expressed genes, some of which are uncharacterized, that together may reflect a common regulatory mechanism. The identified gene families could be useful for developing novel therapeutics to treat human and animal diseases.


Assuntos
Perfilação da Expressão Gênica , Hibernação/genética , Transcriptoma , Ursidae/fisiologia , Animais , Metabolismo Energético , Especificidade de Órgãos
7.
Microb Ecol ; 77(3): 559-573, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30105506

RESUMO

Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 µM) or low (~ 0 µM) H2S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2S may differentially affect biodiversity. The presence of elevated H2S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group-whether fish, macroinvertebrates, or bacteria-being considered. For bacterial diversity, we recovered nine abundant operational taxonomic units (OTUs) that comprised a core H2S-rich stream microbiome in the region. Many H2S-associated OTUs were members of the Epsilonproteobacteria and Gammaproteobacteria, which both have been implicated in endosymbiotic relationships between sulfur-oxidizing bacteria and eukaryotes, suggesting the potential for symbioses that remain to be discovered in these habitats.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Sulfeto de Hidrogênio/metabolismo , Rios/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Sulfeto de Hidrogênio/análise , México , Filogenia , Rios/química
8.
PLoS One ; 13(10): e0203973, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332408

RESUMO

As the source of chocolate, cacao has become one of the most important crops in the world. The identification of molecular markers to understand the demographic history, genetic diversity and population structure plays a pivotal role in cacao breeding programs. Here, we report the use of a modified genotyping-by-sequencing (GBS) approach for large-scale single nucleotide polymorphism (SNP) discovery and allele ancestry mapping. We identified 12,357 bi-allelic SNPs after filtering, of which, 7,009 variants were ancestry informative. The GBS approach proved to be rapid, cost-effective, and highly informative for ancestry assignment in this species.


Assuntos
Cacau/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Alelos , Mapeamento Cromossômico , Evolução Molecular , Biblioteca Gênica , Melhoramento Vegetal
9.
Mol Ecol ; 26(22): 6384-6399, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28926156

RESUMO

The notorious plasticity of gene expression responses and the complexity of environmental gradients complicate the identification of adaptive differences in gene regulation among populations. We combined transcriptome analyses in nature with common-garden and exposure experiments to establish cause-effect relationships between the presence of a physiochemical stressor and expression differences, as well as to test how evolutionary change and plasticity interact to shape gene expression variation in natural systems. We studied two evolutionarily independent population pairs of an extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulphide (H2 S)-rich springs and adjacent nontoxic habitats and assessed genomewide expression patterns of wild-caught and common-garden-raised individuals exposed to different concentrations of H2 S. We found that 7.7% of genes that were differentially expressed between sulphidic and nonsulphidic ecotypes remained differentially expressed in the laboratory, indicating that sources of selection other than H2 S-or plastic responses to other environmental factors-contribute substantially to gene expression patterns observed in the wild. Concordantly differentially expressed genes in the wild and the laboratory were primarily associated with H2 S detoxification, sulphur processing and metabolic physiology. While shared, ancestral plasticity played a minor role in shaping gene expression variation observed in nature, we documented evidence for evolved population differences in the constitutive expression as well as the H2 S inducibility of candidate genes. Mechanisms underlying gene expression variation also varied substantially across the two ecotype pairs. These results provide a springboard for studying evolutionary modifications of gene regulatory mechanisms that underlie expression variation in locally adapted populations.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Ecossistema , Ecótipo , Poecilia/genética , Animais , Mapeamento Cromossômico , Extremófilos , Proteínas de Peixes/genética , Expressão Gênica , Genética Populacional , Sulfeto de Hidrogênio , Transcriptoma
10.
Mol Ecol ; 26(19): 4920-4934, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731545

RESUMO

Populations with limited ranges can be highly vulnerable to changes in their environment and are, thus, of high conservation concern. Populations that experience human-induced range reductions are often highly inbred and lack genetic diversity, but it is unknown whether this is also the case for populations with naturally small ranges. The fishes Poecilia sulphuraria (listed as critically endangered) and Poecilia thermalis, which are endemic to small hydrogen sulphide-rich springs in southern Mexico, are examples of such populations with inherently small habitats. We used geometric morphometrics and population genetics to quantify phenotypic and genetic variation within and among two populations of P. sulphuraria and one population of P. thermalis. Principal component analyses revealed phenotypic and genetic differences among the populations. Evidence for inbreeding was low compared to populations that have undergone habitat reduction. The genetic data were also used to infer the demographic history of these populations to obtain estimates for effective population sizes and migration rates. Effective population sizes were large given the small habitats of these populations. Our results imply that these three endemic extremophile populations should each be considered separately for conservation purposes. Additionally, this study suggests that populations in naturally small habitats may have lower rates of inbreeding and higher genetic diversity than expected, and therefore may be better equipped to handle environmental perturbations than anticipated. We caution, however, that the inferred lack of inbreeding and the large effective population sizes could potentially be a result of colonization by genetically diverse ancestors.


Assuntos
Variação Genética , Genética Populacional , Endogamia , Poecilia/genética , Animais , Mapeamento Cromossômico , DNA Mitocondrial/genética , Ecossistema , Feminino , Sulfeto de Hidrogênio , Funções Verossimilhança , México , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA