Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(23): e202401061, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38595065

RESUMO

Invited for the cover of this issue are the groups of Marcella Bonchio at the University of Padova and Jérôme Canivet at the CNRS-University of Lyon. The image depicts the hierarchical self-organization of bio-inspired quantasomes, crosslinked within a polystyrene network to enchain their lateral and orthogonal proximity for long-lasting oxygen evolution using green photons. Read the full text of the article at 10.1002/chem.202303784.

2.
Chemistry ; 30(23): e202303784, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38289975

RESUMO

PSII-inspired quantasomes have emerged as promising artificial photosystems evolving oxygen from water due to their integrated multi-chromophore asset, hierarchical architecture, and efficient light-harvesting capabilities. In this study, we adopt a combined covalent and supramolecular strategy by implementing a poly-styrene backbone that reinforces proximity and pairing between adjacent perylenebisimide (PBI) quantasome units. The covalent fixation of the quantasome network results in a significant enhancement of the photoelectrocatalytic performance on engineered IO-ITO photoanodes, with up to 290 % photocurrent increase (J up to 100 µA cm-2, λ >450 nm, applied bias <1.23 V vs RHE, F.E.O2 >80 %) compared to the non-polymerized analog. Moreover, the direct PBI-quantasome polymerization on the photoanode surface was performed by light irradiation of the radical initiator 2,2'-Azobis(2-methylpropionamidine), improving the photoelectrode robustness under high solar irradiance (>8 suns) and limiting the photocurrent loss (<20 %) at 1.52 V vs RHE compared to the non-polymerized system.

3.
Nanoscale ; 16(4): 1853-1864, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38167682

RESUMO

We present the results of a full quantitative analysis of X-ray absorption spectroscopy (XAS) performed in situ during the growth of ultrathin titanium disulfide (TiS2) films via an innovative two-step process, i.e. atomic layer deposition/molecular layer deposition (ALD/MLD) followed by annealing. This growth strategy aims at separating the growth process from the crystallization process by first creating an amorphous Ti-thiolate that is converted later to crystalline TiS2via thermal annealing. The simultaneous analysis of Ti and S K-edge XAS spectra, exploiting the insights from density functional theory calculations, allows us to shed light on the chemical and structural mechanisms underlying the main steps of growth. The nature of the bonding at the base of the interface creation with the SiO2 substrate is disclosed in this study. Evidence of a progressive incorporation of S in the amorphous Ti-thiolate is given. Finally, it is shown that the annealing step plays a critical role since the transformation of the Ti-thiolate into nanocrystalline TiS2 and the loss of S are simultaneously induced, validating the two-step synthesis approach, which entails distinct growth and crystallization steps. These observations contribute to a deeper understanding of the bonding mechanism at the interface and provide insights for future research in this field and the generation of ultra-thin layered materials.

4.
Chem Soc Rev ; 52(22): 8059-8076, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902965

RESUMO

The last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.

5.
Nanoscale ; 15(15): 7115-7125, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37000615

RESUMO

Metal-organic frameworks are a class of porous materials that show promising properties in the field of microelectronics. To reach industrial use of these materials, gas phase techniques are often preferred and were recently introduced. However, the thicknesses achieved are not sufficient, limiting further development. In this work, an improved gas phase process allowing ZIF-8 layer formation of several hundreds of nm using cyclic ligand/water exposures is described. Then, by a combination of in-depth surface analyses and molecular dynamics simulations, the presence and role of hydroxyl defects in the ZIF-8 layer to reach this thickness are established. At the same time, this study unveils an inherent limit of the method: thickness growth is consubstantial with defect repairing upon the crystallites ripening; such defect repairing eventually leads to the decrease of the pore window below the diffusion radius of the incoming linker, thus apparently capping the maximum MOF thickness observable for this type of material topology through this growth method.

6.
ACS Appl Mater Interfaces ; 14(12): 14182-14192, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293203

RESUMO

Covalent triazine frameworks (CTFs) are a class of porous organic polymers that continuously attract growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic framework structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows us to tailor the physicochemical features of the CTF materials, including the nitrogen content, the apparent specific surface area, and optoelectronic properties. Based on a comprehensive analytical investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as the specific surface area, band gap, charge separation, and surface wettability with water. The entirety of these parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the optimal balance between optoelectronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol/(h·g) under visible light irradiation and in the presence of a platinum cocatalyst.

7.
RSC Adv ; 11(29): 17985-17992, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34046174

RESUMO

Amorphous MoS2 has been investigated abundantly as a catalyst for hydrogen evolution. Not only its performance but also its chemical stability in acidic conditions have been reported widely. However, its adhesion has not been studied systematically in the electrochemical context. The use of MoS2 as a lubricant is not auspicious for this purpose. In this work, we start with a macroporous anodic alumina template as a model support, add an underlayer of SnO2 to provide electrical conduction and adhesion, then provide the catalytically active, amorphous MoS2 material by atomic layer deposition (ALD). The composition, morphology, and crystalline or amorphous character of all layers are confirmed by spectroscopic ellipsometry, X-ray photoelectron spectroscopy, grazing incidence X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic water reduction performance of the macroporous AAO/SnO2/MoS2 electrodes, quantified by voltammetry, steady-state chronoamperometry and electrochemical impedance spectroscopy, is improved by annealing the SnO2 layer prior to MoS2 deposition. Varying the geometric parameters of the electrode composite yields an optimized performance of 10 mA cm-2 at 0.22 V overpotential, with a catalyst loading of 0.16 mg cm-2. The electrode's stability is contingent on SnO2 crystallinity. Amorphous SnO2 allows for a gradual dewetting of the originally continuous MoS2 layer over wide areas. In stark contrast to this, crystalline SnO2 maintains the continuity of MoS2 until at least 0.3 V overpotential.

8.
Dalton Trans ; 50(3): 869-879, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33237067

RESUMO

The rhodium complex Rh(HL)(COD)Cl, 1, L being a functionalized N-heterocyclic carbene (NHC) ligand with an oxygen-containing pendant arm, has been used as the entry point to synthesize a series of neutral and cationic Rh(i) O,C chelates. While the Rh-carbene interaction is similar in all these 16-electron complexes, structural analysis reveals that the strength of the Rh-O bond is greatly affected by the nature of the O-donor: R-O- > R-OH > R-OBF3. These subtle changes in the nature of the O-containing tether are found to be responsible for large differences in the alkene hydrosilylation catalytic activity of these compounds: the stronger the Rh-O interaction, the better the catalytic performances. The most active catalyst, [Rh(L)(COD)], 2, demonstrated good catalytic activity under mild reaction conditions for the hydrosilylation of a range of alkene substrates with the industrially relevant non-activated tertiary silane, 1,1,1,3,5,5,5-heptamethyltrisiloxane (MDHM). Furthermore, this complex is an effective catalyst for the selective remote functionalization of internal olefins at room temperature via tandem alkene isomerization-hydrosilylation.

9.
Dalton Trans ; 49(10): 3120-3128, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32096534

RESUMO

We report the synthesis and characterization of a series of original tantalum/rhodium heterobimetallic species assembled by a bifunctional alkoxy-N-heterocyclic carbene (NHC) ligand platform (noted L). The heterotrimetallic [Ta(CH2tBu)(CHtBu)(µ-L)Rh2(COD)2Cl2]n, 2, and heterobimetallic [Ta(µ-L)(CHtBu)(CH2tBu)2Rh(COD)Cl], 4, complexes are obtained upon treatment of [Ta(L)(CHtBu)(CH2tBu)2], 1, with [Rh(COD)Cl]2. To avoid parasistic reactivity arising from the neopentylidene fragment in 1, the peralkyl compound {Ta(L)[OSi(OtBu)3](CH2tBu)3}, 5, resulting from the 1,2-addition of tris(tertbutoxysilanol) across the Ta[double bond, length as m-dash]C alkylidene motif, is prepared. An unanticipated silanol-NHC adduct, {HOSiOtBu3}{Ta(L)[OSi(OtBu)3](CH2tBu)3}, 6, is formed when 1 is treated with two equivalents of HOSi(OtBu)3. Finally, treatment of 5 with [Rh(COD)Cl]2 provides the heterobimetallic complex {Ta(µ-L)[OSi(OtBu)3](CH2tBu)3Rh(COD)(Cl)}, 7, in high yield. This work highlights the reactivity of Ta-NHC adducts and the aptitude of the NHC motif to transfer from Ta to Rh which is used with profit as an efficient synthetic route to access early/late heterobimetallic complexes.

10.
Angew Chem Int Ed Engl ; 59(13): 5116-5122, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31945254

RESUMO

The molecular-level structuration of two full photosystems into conjugated porous organic polymers is reported. The strategy of heterogenization gives rise to photosystems which are still fully active after 4 days of continuous illumination. Those materials catalyze the carbon dioxide photoreduction driven by visible light to produce up to three grams of formate per gram of catalyst. The covalent tethering of the two active sites into a single framework is shown to play a key role in the visible light activation of the catalyst. The unprecedented long-term efficiency arises from an optimal photoinduced electron transfer from the light harvesting moiety to the catalytic site as anticipated by quantum mechanical calculations and evidenced by in situ ultrafast time-resolved spectroscopy.

11.
Chem Sci ; 11(33): 8800-8808, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123133

RESUMO

Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal-organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal-organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host-guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

12.
J Am Chem Soc ; 141(44): 17487-17492, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31661277

RESUMO

A method for the synthesis of substituted cycloalkanes was developed using diols and secondary alcohols or ketones via a cascade hydrogen borrowing sequence. A non-noble and air-stable manganese catalyst (2 mol %) was used to perform this transformation. Various substituted 1,5-pentanediols (3-4 equiv) and substituted secondary alcohols (1 equiv) were investigated to prepare a collection of substituted cyclohexanes in a diastereoselective fashion. Similarly, cyclopentane, cyclohexane, and cycloheptane rings were constructed from substituted 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol, and sterically hindered ketones following a (4 + 1), (5 + 1), and (6 + 1) strategy, respectively. This reaction provides an atom economic methodology to construct two C-C bonds at a single carbon center generating high-value cycloalkanes from readily available alcohols as feedstock using an earth-abundant metal catalyst.

13.
ACS Omega ; 4(5): 8816-8823, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31172043

RESUMO

The electrochemical splitting of water provides an elegant way to store renewable energy, but it is limited by the cost of the noble metals used as catalysts. Among the catalysts used for the reduction of water to hydrogen, MoS2 has been identified as one of the most promising materials as it can be engineered to provide not only a large surface area but also an abundance of unsaturated and reactive coordination sites. Using Mo[NMe2]4 and H2S as precursors, a desired thickness of amorphous MoS2 can be deposited on TiO2 nanotubes by atomic layer deposition. The identity and structure of the MoS2 film are confirmed by spectroscopic ellipsometry, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The electrocatalytic performance of MoS2 is quantified as it depends on the tube length and the MoS2 layer thickness through voltammetry, steady-state chronoamperometry, and electrochemical impedance spectroscopy. The best sample reaches 10 mA/cm2 current density at 189 mV overpotential in 0.5 M H2SO4. All of the various geometries of our nanostructured electrodes reach an electrocatalytic proficiency comparable with the state-of-the-art MoS2 electrodes, and the dependence of performance parameters on geometry suggests that the system can even be improved further.

14.
Chemistry ; 24(17): 4361-4370, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29315910

RESUMO

The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH2 tBu)2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl]2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH2 tBu)2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH2 tBu)3 ].

15.
ChemSusChem ; 10(22): 4442-4446, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28921891

RESUMO

The addition of a CO2 -adsorption component (substituted imidazolate-based SIM-1 crystals) to a gas-diffusion layer-type catalytic electrode enhances the activity and especially the selectivity towards >C1 carbon chain products (ethanol, acetone, and isopropanol) of a Pt-based electrocatalyst that is not able to form products of CO2 reduction involving C-C bond formation under conventional (liquid-phase) conditions. This indicates that the increase of the effective CO2 concentration at the electrode active surface is the factor controlling the formation of >C1 products rather than only the intrinsic properties of the electrocatalyst.


Assuntos
Dióxido de Carbono/química , Carbono/química , Platina/química , 2-Propanol/química , Acetona/química , Adsorção , Catálise , Difusão , Técnicas Eletroquímicas , Eletrodos , Etanol/química , Oxirredução , Propriedades de Superfície
16.
Chemphyschem ; 18(20): 2855-2858, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28834034

RESUMO

Photoacoustic Fourier-transform infrared spectroscopy makes it possible to determine the organic composition of mixed-linker metal-organic frameworks. The sound produced upon IR irradiation enables the discrimination of azido and amino linkers in three different MOF platforms with a sensitivity that is two orders of magnitude higher than that achieved using classic IR analysis.

17.
Nanoscale ; 9(2): 538-546, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27762415

RESUMO

The lack of scalable-methods for the growth of 2D MoS2 crystals, an identified emerging material with applications ranging from electronics to energy storage, is a current bottleneck against its large-scale deployment. We report here a two-step ALD route with new organometallic precursors, Mo(NMe2)4 and 1,2-ethanedithiol (HS(CH2)2SH) which consists in the layer-by-layer deposition of an amorphous surface Mo(iv) thiolate at 50 °C, followed by a subsequent annealing at higher temperature leading to ultra-thin MoS2 nanocrystals (∼20 nm-large) in the 1-2 monolayer range. In contrast to the usual high-temperature growth of 2D dichalcogenides, where nucleation is the key parameter to control both thickness and uniformity, our novel two-step ALD approach enables chemical control over these two parameters, the growth of 2D MoS2 crystals upon annealing being ensured by spatial confinement and facilitated by the formation of a buffer oxysulfide interlayer.

18.
Chemistry ; 22(11): 3713-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26807710

RESUMO

As a novel avenue for applications, metal-organic frameworks (MOFs) are increasingly used for heterogenizing catalytic molecular species as linkers into their crystalline framework. These multifunctional compounds can be accessed with mixed linkers synthesis or postsynthetic-exchange strategies. Major limitations still reside in their challenging characterization; in particular, to provide evidence of the genuine incorporation of the functionalized linkers into the framework and their quantification. Herein, we demonstrate that a combination of computational chemistry, spectroscopy and X-ray diffraction allows access to a non-destructive analysis of mixed-linker UiO-67-type materials featuring biphenyl- and bipyridine-dicarboxylates. Our UV/Vis-based methodology has been further applied to characterize a series of Rh-functionalized UiO-67-type catalysts. The proposed approach allows a recurrent key issue in the characterization of similar supported organometallic systems to be solved.

20.
Inorg Chem ; 54(24): 11648-59, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26650850

RESUMO

Hydrazine reacts with silica-supported tantalum-hydrides [(≡SiO)2TaHx] (x = 1, 3), 1, under mild conditions (100 °C). The IR in situ monitoring of the reaction with N2H4 or (15)N2H4, and the solid-state MAS NMR spectra of the fully (15)N labeled compounds (CP (15)N, (1)H-(15)N HETCOR, (1)H-(1)H double-quantum, and (1)H-(1)H triple-quantum spectra) were used to identify stable intermediates and products. DFT calculations were used for determining the reaction pathway and calculating the (15)N and (1)H NMR chemical shifts. Combining the experimental and computational studies led to the following results. At room temperature, only hydrazine adducts, 1-N2H4, are formed. Upon heating at 100 °C, the hydrazine adducts are converted to several species among which [(≡SiO)2Ta(═NH)(NH2)], 2, [(≡SiO)2TaH(NH2)2], 3, and [(≡SiO)2TaH2(NH-NH2)], 4, were identified. The final product 2 is also formed in the reaction of N2 with the same silica-supported tantalum-hydride complexes, and the species identified as 3 and 4 had been previously suggested by DFT studies as intermediates on the reaction pathway for N-N cleavage in N2. The present computational studies (cluster models with M06 functional complemented by selected calculations with periodic calculations) show that 2 is formed via 3 and 4, with either N2 or N2H4. This strengthens the previous proposal of the existence of 3 and 4 as intermediates in the reaction of N2 with the tantalum-hydrides. However, the reaction of N2 does not imply the formation of N2H4 or its hydrazido monoanionic or dianionic ligand as an intermediate. For this reason, this study informs both on the similarities and differences of the reaction pathways involving N2 and N2H4 with tantalum-hydrides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...