Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
J Clin Immunol ; 43(8): 2115-2125, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770806

RESUMO

Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.


Assuntos
Agamaglobulinemia , Aminoacil-tRNA Sintetases , Lisina-tRNA Ligase , Doenças da Imunodeficiência Primária , Humanos , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Surdez/genética , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Mutação/genética , Doenças da Imunodeficiência Primária/genética
3.
Biochem Pharmacol ; 217: 115809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717691

RESUMO

Although a great cure rate has been achieved for pediatric BCP-ALL, approximately 15% of patients do not respond to conventional chemotherapy and experience disease relapse. A major effort to improve the cure rates by treatment intensification would result in an undesirable increase in treatment-related toxicity and mortality, raising the need to identify novel therapeutic approaches. High-throughput (HTP) drug screening enables the profiling of patients' responses in vitro and allows the repurposing of compounds currently used for other diseases, which can be immediately available for clinical application. The aim of this study was to apply HTP drug screening to identify potentially effective compounds for the treatment of pediatric BCP-ALL patients with poor prognosis, such as patients with Down Syndrome (DS) or carrying rearrangements involving PAX5 or KMT2A/MLL genes. Patient-derived Xenografts (PDX) samples from 34 BCP-ALL patients (9 DS CRLF2r, 15 PAX5r, 10 MLLr), 7 human BCP-ALL cell lines and 14 hematopoietic healthy donor samples were screened on a semi-automated HTP drug screening platform using a 174 compound library (FDA/EMA-approved or in preclinical studies). We identified 9 compounds active against BCP-ALL (ABT-199/venetoclax, AUY922/luminespib, dexamethasone, EC144, JQ1, NVP-HSP990, paclitaxel, PF-04929113 and vincristine), but sparing normal cells. Ex vivo validations confirmed that the BCL2 inhibitor venetoclax exerts an anti-leukemic effect against all three ALL subgroups at nanomolar concentrations. Overall, this study points out the benefit of HTP screening application for drug repurposing to allow the identification of effective and clinically translatable therapeutic agents for difficult-to-treat childhood BCP-ALL subgroups.


Assuntos
Reposicionamento de Medicamentos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Ensaios de Triagem em Larga Escala , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
4.
EBioMedicine ; 83: 104224, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985167

RESUMO

BACKGROUND: Despite intensive risk-based treatment protocols, 15% of paediatric patients with B-Cell Precursor Acute Lymphoblastic Leukaemia (BCP-ALL) experience relapse. There is urgent need of novel strategies to target poor prognosis subgroups, like PAX5 translocated. METHODS: We considered 289 childhood BCP-ALL cases consecutively enrolled in Italy in the AIEOP-BFM ALL2000/R2006 protocols and we performed extensive molecular profiling, integrating gene expression, copy number analyses and fusion genes discovery by target-capture NGS. We developed preclinical strategies to target PAX5 fusion genes. FINDINGS: We identified 135 cases without recurrent genetic rearrangements. Among them, 59 patients (43·7%) had a Ph-like signature; the remaining cases were identified as ERG-related (26%), High-Hyperdiploid-like (17%), ETV6::RUNX1-like (8·9%), MEF2D-rearranged (2·2%) or KMT2A-like (1·5%). A poor prognosis was associated with the Ph-like signature, independently from other high-risk features. Interestingly, PAX5 was altered in 54·4% of Ph-like compared to 16·2% of non-Ph-like cases, with 7 patients carrying PAX5 fusions (PAX5t), involving either novel (ALDH18A1, IKZF1, CDH13) or known (FBRSL1, AUTS2, DACH2) partner genes. PAX5t cases have a specific driver activity signature, extending to multiple pathways including LCK hyperactivation. Among FDA-approved drugs and inhibitors, we selected Dasatinib, Bosutinib and Foretinib, in addition to Nintedanib, known to be LCK ligands. We demonstrated the efficacy of the LCK-inhibitor BIBF1120/Nintedanib, as single agent or in combination with conventional chemotherapy, both ex vivo and in patient-derived xenograft model, showing a synergistic effect with dexamethasone. INTERPRETATION: This study provides new insights in high-risk Ph-like leukaemia and identifies a potential therapy for targeting PAX5-fusion poor risk group. FUNDING: Ricerca Finalizzata-Giovani Ricercatori (Italian Ministry of Health), AIRC, Transcall, Fondazione Cariparo.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Subunidade alfa 2 de Fator de Ligação ao Core , Dasatinibe , Dexametasona , Humanos , Indóis , Recidiva Local de Neoplasia , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Blood ; 137(4): 493-499, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32905580

RESUMO

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Assuntos
Agamaglobulinemia/genética , Linfócitos B/patologia , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Síndromes de Imunodeficiência/genética , Linfopenia/genética , Adulto , Animais , Linfócitos B/metabolismo , Criança , Pré-Escolar , Cromossomos Humanos Par 5/genética , Códon sem Sentido , Consanguinidade , Doença de Crohn/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Cardiopatias Congênitas/genética , Humanos , Infecções/etiologia , Mutação com Perda de Função , Masculino , Camundongos , Neutropenia/genética , Linhagem , Dissomia Uniparental , Sequenciamento do Exoma
7.
Hemasphere ; 3(3): e250, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31723839

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequent pediatric cancer. Fusion genes are hallmarks of ALL, and they are used as biomarkers for risk stratification as well as targets for precision medicine. Hence, clinical diagnostics pursues broad and comprehensive strategies for accurate discovery of fusion genes. Currently, the gold standard methodologies for fusion gene detection are fluorescence in situ hybridization and polymerase chain reaction; these, however, lack sensitivity for the identification of new fusion genes and breakpoints. In this study, we implemented a simple operating procedure (OP) for detecting fusion genes. The OP employs RNA CaptureSeq, a versatile and effortless next-generation sequencing assay, and an in-house as well as a purpose-built bioinformatics pipeline for the subsequent data analysis. The OP was evaluated on a cohort of 89 B-cell precursor ALL (BCP-ALL) pediatric samples annotated as negative for fusion genes by the standard techniques. The OP confirmed 51 samples as negative for fusion genes, and, more importantly, it identified known (KMT2A rearrangements) as well as new fusion events (JAK2 rearrangements) in the remaining 38 investigated samples, of which 16 fusion genes had prognostic significance. Herein, we describe the OP and its deployment into routine ALL diagnostics, which will allow substantial improvements in both patient risk stratification and precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...