Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113046, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651231

RESUMO

Motor neuron degeneration, the defining feature of amyotrophic lateral sclerosis (ALS), is a primary example of cell-type specificity in neurodegenerative diseases. Using isogenic pairs of induced pluripotent stem cells (iPSCs) harboring different familial ALS mutations, we assess the capacity of iPSC-derived lower motor neurons, sensory neurons, astrocytes, and superficial cortical neurons to capture disease features including transcriptional and splicing dysregulation observed in human postmortem neurons. At early time points, differentially regulated genes in iPSC-derived lower motor neurons, but not other cell types, overlap with one-third of the differentially regulated genes in laser-dissected motor neurons from ALS compared with control postmortem spinal cords. For genes altered in both the iPSC model and bona fide human lower motor neurons, expression changes correlate between the two populations. In iPSC-derived lower motor neurons, but not other derived cell types, we detect the downregulation of genes affected by TDP-43-dependent splicing. This reduction takes place exclusively within genotypes known to involve TDP-43 pathology.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Expressão Gênica , Proteínas de Ligação a DNA/metabolismo
2.
iScience ; 25(4): 104069, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372812

RESUMO

FBXO41 is a neuron-specific E3 ligase subunit implicated in epileptic encephalopathies. Fbxo41 null mutant (KO) mice show behavioral deficits and early lethality. Here, we report that loss of FBXO41 causes defects in synaptic transmission and brain development. Cultured Fbxo41 KO neurons had normal morphology and showed no signs of degeneration. Single-cell electrophysiology showed a lower synaptic vesicle release probability in excitatory neurons. Inhibitory neurons exhibited reduced synaptophysin expression, a smaller readily releasable pool, and decreased charge transfer during repetitive stimulation. In Fbxo41 KO hippocampal slices at postnatal day 6, the dentate gyrus was smaller with fewer radial-glial-like cells and immature neurons. In addition, neuronal migration was delayed. Two-photon calcium imaging showed a delayed increase in network activity and synchronicity. Together, our findings point toward a role for FBXO41 in synaptic transmission and postnatal brain development, before behavioral deficits are detected in Fbxo41 KO mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA