Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 81(2): 255-264, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34137922

RESUMO

Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 µg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 µg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 µg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 µg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., "freezing"). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 µg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 µg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 µg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antioxidantes , Neonicotinoides/toxicidade , Nitrocompostos , Estresse Oxidativo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Pharmacol Biochem Behav ; 165: 1-8, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29241648

RESUMO

Caffeine is a substance present in several foods and drinks of common western diet. Although high caffeine concentrations induce anxiogenic properties in various species, the influence of the different baselines of anxiety levels on caffeine-mediated responses is poorly understood. The short-fin wild-type (WT) and leopard (leo) zebrafish populations present significant behavioral differences, in which leo shows exacerbated anxiety-like responses. Since behavioral neurophenotyping may be easily assessed in adult zebrafish by associating temporal and spatial three-dimensional reconstructions of locomotion, we investigated the effects of caffeine on exploration and anxiety-like behavior of WT and leo zebrafish. Moreover, the whole-body cortisol content was assessed in the absence and presence of caffeine. For this purpose, animals were acutely exposed to caffeine (25, 50, 100 and 200mg/L) for 15min and further tested in the novel tank. Endpoint data and 3D reconstruction plots revealed that caffeine was anxiogenic in both WT and leo populations by altering vertical swimming, freezing, and erratic movements depending on the concentration. Prominent anxiogenic effects during habituation to novelty were observed in WT, suggesting a fundamental role of the phenotype in caffeine-mediated neurobehavioral responses. Although untreated leo showed higher baseline cortisol levels than control WT, caffeine increased whole-body cortisol in both populations. Moreover, caffeine induced aberrant swimming profiles in WT and leo following 200mg/L exposure, which could reflect nonspecific toxicity and/or seizure-like behaviors. Collectively, our novel findings show that caffeine effects in zebrafish differ in a population-dependent manner.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Peixe-Zebra/fisiologia , Animais , Ansiedade/induzido quimicamente , Comportamento Exploratório , Feminino , Reação de Congelamento Cataléptica , Hidrocortisona/análise , Locomoção , Masculino , Fenótipo , Especificidade da Espécie , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...