Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Athl Train ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014789

RESUMO

CONTEXT: Wearable sensors are increasingly popular in concussion research because of their objective quantification of subtle balance deficits. However, normative data and minimum detectable change values are necessary to serve as a references for diagnostic use and tracking longitudinal recovery. OBJECTIVE: Identify normative values and minimal detectable change values for instrumented static and reactive balance tests, an instrumented static Mediolateral Root Mean Square (ML RMS) sway standing balance assessment, and the instrumented, modified Push & Release (I-mP&R), respectively. DESIGN: Cross-Sectional Study. SETTING: Clinical Setting. PATIENTS OR OTHER PARTICIPANTS: Normative static ML RMS sway and I-mP&R data were collected on 377 (n=184 females) healthy National Collegiate Athletic Association Division I athletes at the beginning of their competitive seasons. Test-retest data were collected in 36 healthy control athletes based on standard recovery timelines after concussion. RESULTS: Descriptive statistics, intraclass correlation coefficients (ICC), and minimal detectable change (MDC) values were calculated for primary outcomes of mediolateral (ML) root-mean-square (RMS) sway in a static double limb-stance standing on firm ground and a foam block, and time to stability and latency from the I-mP&R in single- and dual-task conditions. RESULTS: Normative outcomes across static ML RMS sway and I-mP&R were sensitive to sex and type of footwear. ML RMS sway demonstrated moderate reliability in the firm condition (ICC=0.73; MDC=2.7cm/s2), but poor reliability in the foam condition (ICC=0.43; MDC=11.1cm/s2). Single- and dual-task time to stability from the I-mP&R exhibited good reliability (ICC=0.84 and 0.80, respectfully; MDC=0.25s, 0.59s, respectfully). Latency from the I-mP&R had poor to moderate reliability (ICC=0.38, 0.55; MDC=107ms, 105ms). CONCLUSIONS: Sex-matched references should be used for instrumented static and reactive balance assessments. Footwear may explain variability in static ML RMS sway and time to stability of the I-mP&R. Moderate-to-good reliability suggest time to stability from the I-mP&R and ML RMS static sway on firm ground can be used for longitudinal assessments.

2.
Clin Biomech (Bristol, Avon) ; 88: 105436, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34364100

RESUMO

BACKGROUND: Trunk movement compensation characterized as ipsilateral trunk lean and posterior rotation with respect to pelvis during stance phase of walking is common in people with hip osteoarthritis and a biomarker of deficits in physical function in older adults. However, the relationship between trunk movement compensation on deficits in physical performance, muscle strength and functional capacity is unknown. METHODS: A cross-sectional study design was used. Two inertial measurement units were used to assess trunk movement compensation during the six-minute-walk-test. Knee extension, knee flexion and hip abduction strength were measured using hand-held dynamometer. Multivariate regression models, controlling for self-reported hip pain, were used to regress trunk movement compensation onto six-minute-walk-test and muscle strength measures. Pairwise t-tests were used to evaluate the difference trunk movement compensation has on functional capacity by comparing the first and last minute of the six-minute-walk-test. FINDINGS: Thirty-five participants (63.3 ± 7.4 years, 57% male, 28.6 ± 4.5 kg/m2) were enrolled. Greater trunk movement compensation was related to poorer six-minute-walk-test (p = 0.03; r = -0.46). Greater hip abduction weakness was related to increased trunk movement compensation in both the sagittal (p = 0.05; r = -0.44) and frontal (p = 0.04; r = -0.38) planes. Participants demonstrated greater frontal plane trunk movement compensation during the last minute compared to the first minute of the six-minute-walk-test (p < 0.01). INTERPRETATION: Trunk movement compensation, identified by inertial measure units, is a clinically relevant measure and has a moderate-to-strong relationship on deficits in physical performance, muscle strength and functional capacity. Inertial measurement units can be used as a practical means of measuring movement quality in the clinical setting.


Assuntos
Osteoartrite do Quadril , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Força Muscular , Músculo Esquelético , Desempenho Físico Funcional , Tronco
3.
Proc Biol Sci ; 282(1798): 20142124, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392474

RESUMO

Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.


Assuntos
Quirópteros/virologia , Modelos Biológicos , Infecções por Vírus de RNA/transmissão , Vírus de RNA/fisiologia , Zoonoses/transmissão , Animais , Humanos , Queensland , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Zoonoses/virologia
4.
Ecohealth ; 10(4): 492-3, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24488188
5.
J Athl Train ; 47(1): 32-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22488228

RESUMO

CONTEXT: Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of noncontact anterior cruciate ligament injuries in female athletes. OBJECTIVE: To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task. DESIGN: Controlled laboratory study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: A convenience sample of 15 female soccer players (age = 19.2 ± 0.8 years, height = 1.67 ± 0.05 m, mass = 61.7 ± 8.1 kg) without injury participated. INTERVENTION(S): Five successful trials of a running-stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (Vo(2)peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the Vo(2)peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue). MAIN OUTCOME MEASURE(S): Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue. RESULTS: Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ± 0.09 Nm/kgm) than SLO-FP (0.024 ± 0.06 Nm/kgm) (F(1,14) = 5.610, P = .03). At IC, participants had less hip flexion postfatigue (44.7° ± 8.1°) than prefatigue (50.1° ± 9.5°) (F(1,14) = 16.229, P = .001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7° ± 8.4°) than prefatigue (50.4° ± 10.3°) (F(1,14) = 17.026, P = .001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (-35.9° ± 6.5°) than prefatigue (-38.8° ± 5.03°) (F(1,14) = 11.537, P = .001). CONCLUSIONS: Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes.


Assuntos
Fadiga/fisiopatologia , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Postura/fisiologia , Ligamento Cruzado Anterior , Atletas , Fenômenos Biomecânicos , Feminino , Quadril/fisiologia , Articulação do Quadril/fisiologia , Humanos , Joelho/fisiologia , Consumo de Oxigênio , Amplitude de Movimento Articular , Corrida , Futebol , Adulto Jovem
6.
J Sports Sci ; 30(8): 797-805, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22424559

RESUMO

The purpose of this study was to evaluate the effects of a functional agility fatigue protocol on lower extremity biomechanics between two unanticipated tasks (stop-jump and sidestep). The subjects consisted of fifteen female collegiate soccer athletes (19±0.7 years, 1.67±0.1 m, 61.7±8 kg) free of lower extremity injury. Participants performed five trials of stop-jump and sidestep tasks. A functional short-term agility protocol was performed, and immediately following participants repeated the unanticipated running tasks. Lower extremity kinematic and kinetic values were obtained pre and post fatigue. Repeated measures analyses of variance were conducted for each dependent variable with an alpha level set at 0.05. Knee position post-fatigue had increased knee internal rotation (11.4±7.5° vs. 7.9±6.5° p=0.011) than pre-fatigue, and a decreased knee flexion angle (-36.6±6.2° vs. −40.0±6.3°, p = 0.003), as well as hip position post-fatigue had decreased hip flexion angle (35.5±8.7° vs. 43.2±9.5°, p = 0.002). A quick functional fatigue protocol altered lower extremity mechanics of Division I collegiate soccer athletes during landing tasks. Proper mechanics should be emphasized from the beginning of practice/game to aid in potentially minimizing the effects of fatigue in lower extremity mechanics.


Assuntos
Extremidade Inferior/fisiologia , Fadiga Muscular/fisiologia , Futebol/fisiologia , Adolescente , Fenômenos Biomecânicos/fisiologia , Feminino , Quadril/fisiologia , Humanos , Joelho/fisiologia , Corrida/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...