Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nano Lett ; 23(24): 11510-11516, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085265

RESUMO

In twisted van der Waals (vdW) bilayers, intrinsic strain associated with the moiré superlattice and unintentionally introduced uniaxial strain may be present simultaneously. Both strains are able to lift the degeneracy of the E2g phonon modes in Raman spectra. Because of the different rotation symmetry of the two types of strain, the corresponding Raman intensity exhibits a distinct polarization dependence. We compare a 2.5° twisted MoS2 bilayer, in which the maximal intrinsic moiré strain is anticipated, and a natural MoS2 bilayer with an intentionally introduced uniaxial strain. By analyzing the frequency shift of the E2g doublet and their polarization dependence, we can not only determine the direction of unintentional uniaxial strain in the twisted bilayer but also quantify both strain components. This simple strain characterization method based on far-field Raman spectra will facilitate the studies of electronic properties of moiré superlattices under the influence of combined intrinsic and external strains.

3.
Nano Lett ; 23(23): 11252-11259, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37948605

RESUMO

Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.

4.
Nature ; 620(7974): 533-537, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587298

RESUMO

Controlling quantum materials with light is of fundamental and technological importance. By utilizing the strong coupling of light and matter in optical cavities1-3, recent studies were able to modify some of their most defining features4-6. Here we study the magneto-optical properties of a van der Waals magnet that supports strong coupling of photons and excitons even in the absence of external cavity mirrors. In this material-the layered magnetic semiconductor CrSBr-emergent light-matter hybrids called polaritons are shown to substantially increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons. Our results highlight the importance of exciton-photon self-hybridization in van der Waals magnets and motivate novel directions for the manipulation of quantum material properties by strong light-matter coupling.

5.
Nat Commun ; 14(1): 3712, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349290

RESUMO

The growing field of quantum information technology requires propagation of information over long distances with efficient readout mechanisms. Excitonic quantum fluids have emerged as a powerful platform for this task due to their straightforward electro-optical conversion. In two-dimensional transition metal dichalcogenides, the coupling between spin and valley provides exciting opportunities for harnessing, manipulating, and storing bits of information. However, the large inhomogeneity of single layers cannot be overcome by the properties of bright excitons, hindering spin-valley transport. Nonetheless, the rich band structure supports dark excitonic states with strong binding energy and longer lifetime, ideally suited for long-range transport. Here we show that dark excitons can diffuse over several micrometers and prove that this repulsion-driven propagation is robust across non-uniform samples. The long-range propagation of dark states with an optical readout mediated by chiral phonons provides a new concept of excitonic devices for applications in both classical and quantum information technology.


Assuntos
Ciência da Informação , Fônons , Tecnologia da Informação , Meio Ambiente , Semicondutores
6.
ACS Nano ; 17(6): 5316-5328, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926838

RESUMO

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga-Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr-S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron-phonon and exciton-phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

7.
ACS Nano ; 17(1): 288-299, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36537371

RESUMO

Atomic-level defects in van der Waals (vdW) materials are essential building blocks for quantum technologies and quantum sensing applications. The layered magnetic semiconductor CrSBr is an outstanding candidate for exploring optically active defects because of a direct gap, in addition to a rich magnetic phase diagram, including a recently hypothesized defect-induced magnetic order at low temperature. Here, we show optically active defects in CrSBr that are probes of the local magnetic environment. We observe a spectrally narrow (1 meV) defect emission in CrSBr that is correlated with both the bulk magnetic order and an additional low-temperature, defect-induced magnetic order. We elucidate the origin of this magnetic order in the context of local and nonlocal exchange coupling effects. Our work establishes vdW magnets like CrSBr as an exceptional platform to optically study defects that are correlated with the magnetic lattice. We anticipate that controlled defect creation allows for tailor-made complex magnetic textures and phases with direct optical access.

8.
Nat Commun ; 12(1): 5009, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408145

RESUMO

The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 µs and 10 µs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 µm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.

9.
Nano Lett ; 21(14): 6139-6145, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34252281

RESUMO

MnBi2Te4 represents a new class of magnetic topological insulators in which novel quantum phases emerge at temperatures higher than those found in magnetically doped thin films. Here, we investigate how couplings between electron, spin, and lattice are manifested in the phonon spectra of few-septuple-layer thick MnBi2Te4. After categorizing phonon modes by their symmetries, we study the systematic changes in frequency, line width, and line shape of a spectrally isolated A1g mode. The electron-phonon coupling increases in thinner flakes as manifested in a broader phonon line width, which is likely due to changes of the electron density of states. In 4- and 5-septuple thick samples, the onset of magnetic order below the Néel temperature is concurrent with a transition to an insulating state. We observe signatures of a reduced electron-phonon scattering across this transition as reflected in the reduced Fano parameter. Finally, spin-lattice coupling is measured and modeled from temperature-dependent phonon frequency.

11.
Nat Mater ; 20(8): 1100-1105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33753933

RESUMO

In moiré crystals formed by stacking van der Waals materials, surprisingly diverse correlated electronic phases and optical properties can be realized by a subtle change in the twist angle. Here, we discover that phonon spectra are also renormalized in MoS2 twisted bilayers, adding an insight to moiré physics. Over a range of small twist angles, the phonon spectra evolve rapidly owing to ultra-strong coupling between different phonon modes and atomic reconstructions of the moiré pattern. We develop a low-energy continuum model for phonons that overcomes the outstanding challenge of calculating the properties of large moiré supercells and successfully captures the essential experimental observations. Remarkably, simple optical spectroscopy experiments can provide information on strain and lattice distortions in moiré crystals with nanometre-size supercells. The model promotes a comprehensive and unified understanding of the structural, optical and electronic properties of moiré superlattices.

12.
Phys Rev Lett ; 126(4): 047401, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576642

RESUMO

In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in MoSe_{2}/WSe_{2} twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1° to 3.5°. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moiré potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of "twistronics".

13.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967823

RESUMO

The properties of van der Waals heterostructures are drastically altered by a tunable moiré superlattice arising from periodically varying atomic alignment between the layers. Exciton diffusion represents an important channel of energy transport in transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers suggested that carriers and excitons exhibit long diffusion, a rich variety of scenarios can exist. In a moiré crystal with a large supercell and deep potential, interlayer excitons may be completely localized. As the moiré period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion should be the longest in commensurate heterostructures where the moiré superlattice is completely absent. Here, we experimentally demonstrate the rich phenomena of interlayer exciton diffusion in WSe2/MoSe2 heterostructures by comparing several samples prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles.

14.
Proc Natl Acad Sci U S A ; 117(25): 13908-13913, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513713

RESUMO

The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to an enhanced photoconduction, a complicated process involving charge generation and recombination in the time domain and carrier transport in the spatial domain. Here, we report the simultaneous spatial and temporal photoconductivity imaging in two types of WS2 monolayers by laser-illuminated microwave impedance microscopy. The diffusion length and carrier lifetime were directly extracted from the spatial profile and temporal relaxation of microwave signals, respectively. Time-resolved experiments indicate that the critical process for photoexcited carriers is the escape of holes from trap states, which prolongs the apparent lifetime of mobile electrons in the conduction band. As a result, counterintuitively, the long-lived photoconductivity signal is higher in chemical-vapor deposited (CVD) samples than exfoliated monolayers due to the presence of traps that inhibits recombination. Our work reveals the intrinsic time and length scales of electrical response to photoexcitation in van der Waals materials, which is essential for their applications in optoelectronic devices.

15.
Nature ; 567(7746): 71-75, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804527

RESUMO

Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moiré superlattice3. It is widely recognized that the moiré superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5-7; however, the influence of the moiré superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moiré potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications.

16.
Nano Lett ; 19(2): 1009-1014, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550296

RESUMO

Highly confined and low-loss hyperbolic phonon polaritons in hexagonal boron nitride possess properties analogous to surface plasmon polaritons, but with enhanced confinement and lower loss. Their properties have been so far mostly studied on dielectric substrates, which provide an asymmetric environment for polariton propagation, and add to damping. In this work, we investigate hyperbolic phonon polaritons over suspended hexagonal boron nitride, showing remarkable properties, including elongated polariton wavelength and reduced damping, up to 18% lower compared to dielectric-backed samples. We use real-space nanoimaging of the polaritons in hexagonal boron nitride to demonstrate and visualize these effects. Our results indicate that suspended boron nitride offers better figures of merit for polariton transport, which are generalizable to other polaritonic materials, and they may be explored in heterostructures for advanced nanophotonic applications.

17.
Sci Rep ; 7(1): 14771, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116240

RESUMO

The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO2 planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.

18.
Appl Opt ; 56(20): 5751-5760, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047723

RESUMO

We report an effective and simple method to further enhance the surface-enhanced Raman scattering (SERS) by silver (Ag) nanoparticles (AgNPs) self-assembling into the nanogaps of an Ag nanoisland (AgNIs). The AgNIs prepared by dewetting of Ag film created a nanorough surface, which induced the Ag nanoparticles to regularly deposit into the nanogaps. AgNPs and AgNIs samples were also prepared for comparative analysis. Their SERS activities were investigated theoretically and experimentally. Experimental enhancement factors (EFs) for AgNPs, AgNIs, and AgNPs decorated AgNIs substrate (AgNPs-AgNIs) were ∼107, ∼106, ∼108, respectively, with relative standard deviation (RSD) of 66.1%, 12.9%, and 13.2%. Remarkable enhancement (EF≈108) and excellent reproducibility (RSD=13.2%) indicated the AgNPs-AgNIs had a high potential in practical application. Electromagnetic simulation using COMSOL Multiphysics demonstrated that the additional enhancement of the SERS effect could be mainly attributed to the improvement of the local electromagnetic field. Moreover, the deposition process of Ag nanoparticles was analyzed in detail to understand the reproducibility of AgNPs-AgNIs.

19.
Analyst ; 141(19): 5527-34, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396689

RESUMO

We synthesized a carbon nanotube (CNT) loaded with silver nanoparticles (AgNPs) composite as an effective surface enhanced Raman scattering (SERS) substrate via a low-cost, simple citrate reduction method. The hybrid materials were confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometer and Raman spectroscopy. Rhodamine 6G (R6G) was used as the probe analyte. The experimental results indicated that the detection concentration level was down to 10(-14) M. Additionally, we discussed the uniformity by conducting SERS position mapping within an area of 5 µm × 5 µm; meanwhile, we performed time-course SERS mapping experiments to study the evaporation process of probe molecules of the prepared samples. Finally, we simulated the electromagnetic field distribution based on SEM images (obtained the ratio of surface area to the area of silver particles) by the finite difference time domain (FDTD) method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...