Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161092

RESUMO

Magnesium (Mg)-based alloys have become an important category of materials that is attracting more and more attention due to their high potential use as orthopedic temporary implants. These alloys are a viable alternative to nondegradable metals implants in orthopedics. In this paper, a detailed overview covering alloy development and manufacturing techniques is described. Further, important attributes for Mg-based alloys involved in orthopedic implants fabrication, physiological and toxicological effects of each alloying element, mechanical properties, osteogenesis, and angiogenesis of Mg are presented. A section detailing the main biocompatible Mg-based alloys, with examples of mechanical properties, degradation behavior, and cytotoxicity tests related to in vitro experiments, is also provided. Special attention is given to animal testing, and the clinical translation is also reviewed, focusing on the main clinical cases that were conducted under human use approval.

2.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057284

RESUMO

Fluoride conversion coatings on Mg present many advantages, among which one can find the reduction of the corrosion rate under "in vivo" or "in vitro" conditions and the promotion of the calcium phosphate deposition. Moreover, the fluoride ions released from MgF2 do not present cytotoxic effects and inhibit the biofilm formation, and thus these treated alloys are very suitable for cardiovascular stents and biodegradable orthopedic implants. In this paper, the biodegradation behavior of four new magnesium biodegradable alloys that have been developed in the laboratory conditions, before and after surface modifications by fluoride conversion (and sandblasting) coatings, are analyzed. We performed structural and surface analysis (XRD, SEM, contact angle) before and after applying different surface treatments. Furthermore, we studied the electrochemical behavior and biodegradation of all experimental samples after immersion test performed in NaCl solution. For a better evaluation, we also used LM and SEM for evaluation of the corroded samples after immersion test. The results showed an improved corrosion resistance for HF treated alloy in the NaCl solution. The chemical composition, uniformity, thickness and stability of the layers generated on the surface of the alloys significantly influence their corrosion behavior. Our study reveals that HF treatment is a beneficial way to improve the biofunctional properties required for the studied magnesium alloys to be used as biomaterials for manufacturing the orthopedic implants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...