Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1117905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228368

RESUMO

Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.

2.
Biol Reprod ; 104(6): 1282-1291, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33709118

RESUMO

Zona pellucida (ZP), which is composed of at most four extracellular glycoproteins (ZP1, ZP2, ZP3, and ZP4) in mammals, shelters the oocytes and is vital in female fertility. Several studies have identified the indispensable roles of ZP1-3 in maintaining normal female fertility. However, the understanding of ZP4 is still very poor because only one study on ZP4-associated infertility performed in rabbits has been reported up to date. Here we investigated the function of mammalian Zp4 by creating a knockout (KO) rat strain (Zp4-/- rat) using CRISPR-Cas9-mediated DNA-editing method. The influence of Zp4 KO on ZP morphology and some pivotal processes of reproduction, including oogenesis, ovulation, fertilization, and pup production, were studied using periodic acid-Schiff's staining, superovulation, in vitro fertilization, and natural mating. The ZP morphology in Zp4-/- rats was normal, and none of these pivotal processes was affected. This study renewed the knowledge of mammalian Zp4 by suggesting that Zp4 was completely dispensable for female fertility.


Assuntos
Fertilidade/genética , Fertilização , Ratos/fisiologia , Glicoproteínas da Zona Pelúcida/genética , Animais , Feminino , Edição de Genes , Ratos/genética , Glicoproteínas da Zona Pelúcida/metabolismo
3.
Biol Reprod ; 104(6): 1262-1270, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624742

RESUMO

The zona pellucida (ZP) plays vital roles in reproductive processes including oogenesis, fertilization, and preimplantation development. Both human and rat ZP consist of four glycoproteins, called ZP1, ZP2, ZP3, and ZP4. Our previous research reported a novel Zp1 mutation in cases of human infertility, associated with an abnormal phenotype involving the absence of the ZP. Here, we developed a homologous rat strain to investigate the pathogenic effect. The ovaries of homozygous (Zp1MT/MT) females possessed both growing and fully grown oocytes; the oocytes completely lacked a ZP, but ZP1 was detectable inside the cytoplasm. Only 1-2 eggs were recovered from oviducts of superovulated Zp1MT/MT females, while an average of 21 eggs were recovered from superovulated Zp1WT/WT per female. The eggs of Zp1MT/MT females were not surrounded by a ZP and lost their fertilization capacity in vitro. Zp1MT/MT females mated with wild-type males failed to become pregnant. Studies in 293T cells showed that mutant Zp1 resulted in a truncated ZP1 protein, which might be intracellularly sequestered and interacted with wild-type ZP3 or ZP4. Our results suggest that the Zp1 point mutation led to infertility and loss of the ZP in oocytes in rats.


Assuntos
Infertilidade Feminina/genética , Ovário/fisiopatologia , Glicoproteínas da Zona Pelúcida/genética , Zona Pelúcida/metabolismo , Animais , Feminino , Ratos , Glicoproteínas da Zona Pelúcida/metabolismo
4.
Reproduction ; 160(3): 353-365, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32520719

RESUMO

In this study, we investigated a gene-edited (Zp2MT/MT) rat model of infertility caused by the failure to express the zona pellucida glycoprotein 2 (ZP2) due to the significant reduction of mRNA amount. We examined the defects in the zona pellucida (ZP) caused by ZP2 nullification and the influence of these defects on aspects of oocyte development, including apoptosis and fertilization ability. To investigate the cause of the influence to the oocytes' development, we evaluated the morphology of follicular transzonal projections (TZPs), known as 'bridges', which mediate the bidirectional signaling between the oocyte and surrounding granulosa cells and the level of reactive oxygen species (ROS) in ovulated eggs. Our results showed that two types of ZP defects were generated in the Zp2MT/MT rat,that is, ZP intact but thinned and ZP cracked (or even absent). The fertilization rate of the ovulated eggs reduced in both types, while increased oocyte apoptosis was observed only in the latter type. Moreover, the increased oocyte apoptosis rate correlated closely with the reduction in follicular TZPs and increased ROS levels in ovulated egg. In conclusion, nullification of rat ZP2 destroyed the integrity of the ZP, impaired the bidirectional signaling between the oocyte and surrounding granulosa cells. Therefore, the resulting infertility likely occurs via elevation of oxidative stress and oocytes apoptosis.


Assuntos
Apoptose , Mutação , Oócitos/patologia , Oogênese , Espécies Reativas de Oxigênio/metabolismo , Glicoproteínas da Zona Pelúcida/genética , Animais , Animais Recém-Nascidos , Coeficiente de Natalidade , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Masculino , Oócitos/metabolismo , Ratos , Transdução de Sinais , Glicoproteínas da Zona Pelúcida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA