Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycology ; 15(2): 144-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813471

RESUMO

Inonotus obliquus, also known as Chaga, is a medicinal mushroom that has been used for therapeutic purposes since the sixteenth century. Collections of folk medicine record the application of Chaga for the treatment of diseases such as gastrointestinal cancer, diabetes, bacterial infection, and liver diseases. Modern research provides scientific evidence of the therapeutic properties of I. obliquus extracts, including anti-inflammatory, antioxidant, anticancer, anti-diabetic, anti-obesity, hepatoprotective, renoprotective, anti-fatigue, antibacterial, and antiviral activities. Various bioactive compounds, including polysaccharides, triterpenoids, polyphenols, and lignin metabolites have been found to be responsible for the health-benefiting properties of I. obliquus. Furthermore, some studies have elucidated the underlying mechanisms of the mushroom's medicinal effects, revealing the compounds' interactions with enzymes or proteins of important pathways. Thus, this review aims to explore available information on the therapeutic potentials of Inonotus obliquus for the development of an effective naturally sourced treatment option.

2.
ACS Omega ; 9(12): 14388-14405, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559928

RESUMO

Organic solvents are hazardous to human and environmental health. The emergence of interest in finding greener solvents to replace organic solvents has sparked a series of studies in the use of glycerol for extracting bioactive compounds from natural products. In this study, we will first identify the bioactive compounds of glycerol- and nonglycerol-based Thanaka (Hesperethusa crenulata) bark extracts using liquid chromatography-mass spectrometry profiles; then, we will determine their antioxidant capacity, free radical scavenging activity, and total phenolic and flavonoid contents. Thanaka bark powder was extracted using solvents, namely, ethanol (TKE), water (TKW), glycerol (TKG), glycerol/water (1:1, v/v) (TKGW), and glycerol/ethanol (1:1, v/v) (TKGE). Among the five extracts, the extract of TKG has the highest number of bioactive compounds, as well as the highest total flavonoid content. TKGE possessed the highest total phenolic content and highest antioxidant activity shown in azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric-reducing antioxidant power assays among the five extracts. Overall, glycerol has better efficiency in extracting bioactive compounds from Thanaka bark as compared to ethanol and water. Hence, from the phytochemical content and antioxidant properties of Thanaka extracts, we conclude that glycerol is a good green solvent alternative to replace organic solvents.

3.
J Diabetes Complications ; 37(11): 108629, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866274

RESUMO

Alzheimer Associated Diabetes Mellitus, commonly known as Type 3 Diabetes Mellitus (T3DM) is a distinct subtype of diabetes with a pronounced association with Alzheimer's disease (AD). Insulin resistance serves as a pivotal link between these two conditions, leading to diminished insulin sensitivity, hyperglycemia, and impaired glucose uptake. The brain, a vital organ in AD context, is also significantly impacted by insulin resistance, resulting in energy deficits and neuronal damage, which are hallmark features of the neurodegenerative disorder. To pave the way for potential therapeutic interventions targeting the insulin resistance pathway, it is crucial to comprehend the intricate pathophysiology of T3DM and identify the overlapped features between diabetes and AD. This comprehensive review article aims to explore various pathway such as AMPK, PPARγ, cAMP and P13K/Akt pathway as potential target for management of T3DM. Through the analysis of these complex mechanisms, our goal is to reveal their interdependencies and support the discovery of innovative therapeutic strategies. The review extensively discusses several promising pharmaceutical candidates that have demonstrated dual drug action mechanisms, addressing both peripheral and cerebral insulin resistance observed in T3DM. These candidates hold significant promise for restoring insulin function and mitigating the detrimental effects of insulin resistance on the brain. The exploration of these therapeutic options contributes to the development of innovative interventions that alleviate the burden of T3DM and enhance patient care.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Hiperglicemia , Resistência à Insulina , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/complicações , Insulina/uso terapêutico , Insulina/metabolismo , Resistência à Insulina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA