Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869566

RESUMO

Luminescent carbon dots (CDs) were locally synthesized in the core of CYTOP fibers using IR femtosecond laser direct writing (FLDW), a one-step simple method serving as a post-treatment of the pristine fiber. This approach enables the creation of several types of modifications such as ellipsoid voids. The CDs and photoluminescence (PL) distribute at the periphery of the voids. The PL spectral properties were studied through the excitation/emission matrix in the visible range and excitation/emission spectra in the UV/visible range. Our findings reveal the presence of at least three distinct luminescent species, facilitating a broad excitation range extending from UV to green, and light emission spanning from blue to red. The average laser power and dose influence the quantity and ratio of these luminescent CD species. Additionally, we measured the spatially resolved lifetime of the luminescence during and after the irradiation. We found longer lifetimes at the periphery of the laser-induced modified regions and shorter ones closer to the center, with a dominant lifetime ~2 ns. Notably, unlike many other luminophores, these laser-induced CDs are insensitive to oxygen, enhancing their potential for display or data storage applications.

2.
Opt Lett ; 49(12): 3284-3287, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875601

RESUMO

Optical elements embedded in an optical fiber can be used to shape and modulate the light transmitted within. We consistently observe, via Mueller polarimetry, that the optical properties of a femtosecond (fs) laser-created spherical cavity within a perfluorinated fiber exhibit predictable patterns. Specifically, linear birefringence is always induced at the periphery of the cavity, with its value showing a bell-shape distribution. The peak value of LB showed an increase correlating with the laser fluence and power, but its FWHM remains unchanged. Furthermore, it is important to highlight that when the cavity is disrupted, forming a channel to the fiber's surface, a negative LB is observed at the cavity's periphery, with a value reaching up to -0.4 rad. These optical phenomena may pique the interest of engineering and technical fields, potentially inspiring innovative approaches in optical fiber technology and its associated applications.

3.
Micromachines (Basel) ; 15(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38398925

RESUMO

This paper focuses on the critical role of temperature in ultrafast direct laser writing processes, where temperature changes can trigger or exclusively drive certain transformations, such as phase transitions. It is important to consider both the temporal dynamics and spatial temperature distribution for the effective control of material modifications. We present analytical expressions for temperature variations induced by multi-pulse absorption, applicable to pulse durations significantly shorter than nanoseconds within a spherical energy source. The objective is to provide easy-to-use expressions to facilitate engineering tasks. Specifically, the expressions are shown to depend on just two parameters: the initial temperature at the center denoted as T00 and a factor Rτ representing the ratio of the pulse period τp to the diffusion time τd. We show that temperature, oscillating between Tmax and Tmin, reaches a steady state and we calculate the least number of pulses required to reach the steady state. The paper defines the occurrence of heat accumulation precisely and elucidates that a temperature increase does not accompany systematically heat accumulation but depends on a set of laser parameters. It also highlights the temporal differences in temperature at the focus compared to areas outside the focus. Furthermore, the study suggests circumstances under which averaging the temperature over the pulse period can provide an even simpler approach. This work is instrumental in comprehending the diverse temperature effects observed in various experiments and in preparing for experimental setup. It also aids in determining whether temperature plays a role in the processes of direct laser writing. Toward the end of the paper, several application examples are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA