Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762561

RESUMO

Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues. This causes Plg to convert into an "open" form, which is crucial for activation by host activators. In this study, we investigated how various ligands affect the kinetics of Plg conformational change using small-angle X-ray scattering (SAXS). We began by examining the open and closed conformations of Plg using size-exclusion chromatography (SEC) coupled with SAXS. Next, we developed a high-throughput (HTP) 96-well SAXS assay to study the conformational change of Plg. This method enables us to determine the Kopen value, which is used to directly compare the effect of different ligands on Plg conformation. Based on our analysis using Plg GII, we have found that the Kopen of ε-aminocaproic acid (EACA) is approximately three times greater than that of tranexamic acid (TXA), which is widely recognized as a highly effective ligand. We demonstrated further that Plg undergoes a conformational change when it binds to the C-terminal peptides of the inhibitor α2-antiplasmin (α2AP) and receptor Plg-RKT. Our findings suggest that in addition to the C-terminal lysine, internal lysine(s) are also necessary for the formation of open Plg. Finally, we compared the conformational changes of Plg GI and GII directly and found that the closed form of GI, which has an N-linked glycosylation, is less stable. To summarize, we have successfully determined the response of Plg to various ligand/receptor peptides by directly measuring the kinetics of its conformational changes.


Assuntos
Lisina , Plasminogênio , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Serina Proteases , Anticorpos
2.
Blood ; 139(18): 2816-2829, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35100351

RESUMO

Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.


Assuntos
Angioedemas Hereditários , Angioedemas Hereditários/genética , Angioedemas Hereditários/patologia , Animais , Bradicinina/metabolismo , Fator XIIa/metabolismo , Fibrinolisina , Ácido Glutâmico , Humanos , Cininogênios/metabolismo , Lisina , Mamíferos/metabolismo , Camundongos , Calicreína Plasmática , Plasminogênio/genética , Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual
3.
Gastroenterology ; 159(4): 1431-1443.e6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574621

RESUMO

BACKGROUND & AIMS: The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS: C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS: hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS: We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Enterocolite Pseudomembranosa/etiologia , Enterocolite Pseudomembranosa/patologia , Plasminogênio/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Intestino Delgado , Camundongos , Camundongos Endogâmicos C57BL
4.
ACS Appl Bio Mater ; 3(9): 5880-5886, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021816

RESUMO

Biomedical device-related infection (BDI) is of great concern in modern clinical and medical applications. Various approaches to combat BDI are based on two major principles: the prevention of biofoulants adhering on medical devices and the ability to eradicate biofouling once formed. To minimize the risk of BDI, an antifouling coating with bactericidal ability is highly desirable. In this work, we report on the use of polynorepinephrine (PNE) as a promising strategy to prevent BDI due to its excellent antifouling and photothermal bacterial killing capabilities. PNE coatings show superior protein resistance against a model biofoulant (bovine serum albumin (BSA)) when compared with poly(ethylene glycol) (PEG) and polydopamine (PDA) coatings. The antifouling mechanism between BSA protein molecules and coating films is investigated using atomic force microscopy (AFM). We also demonstrate that PNE-modified surfaces show remarkable bacterial killing ability against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria after being irradiated with an 850 nm near-infrared (NIR) laser. These results indicate that PNE coatings present a highly promising candidate for biomedical antifouling applications.

5.
J Mol Biol ; 431(19): 3804-3813, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31295457

RESUMO

Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-Å x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-Atividade
6.
Biochem Soc Trans ; 47(2): 541-557, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30837322

RESUMO

Plasminogen (Plg) is the zymogen form of the serine protease plasmin (Plm), and it plays a crucial role in fibrinolysis as well as wound healing, immunity, tissue remodeling and inflammation. Binding to the targets via the lysine-binding sites allows for Plg activation by plasminogen activators (PAs) present on the same target. Cellular uptake of fibrin degradation products leads to apoptosis, which represents one of the pathways for cross-talk between fibrinolysis and tissue remodeling. Therapeutic manipulation of Plm activity plays a vital role in the treatments of a range of diseases, whereas Plm inhibitors are used in trauma and surgeries as antifibrinolytic agents. Plm inhibitors are also used in conditions such as angioedema, menorrhagia and melasma. Here, we review the rationale for the further development of new Plm inhibitors, with a particular focus on the structural studies of the active site inhibitors of Plm. We compare the binding mode of different classes of inhibitors and comment on how it relates to their efficacy, as well as possible future developments.


Assuntos
Plasminogênio/metabolismo , Animais , Antifibrinolíticos/farmacologia , Apoptose/genética , Apoptose/fisiologia , Humanos , Plasminogênio/genética , Ativadores de Plasminogênio/farmacologia , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
Blood Adv ; 1(12): 766-771, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29296720

RESUMO

The zymogen protease plasminogen and its active form plasmin perform key roles in blood clot dissolution, tissue remodeling, cell migration, and bacterial pathogenesis. Dysregulation of the plasminogen/plasmin system results in life-threatening hemorrhagic disorders or thrombotic vascular occlusion. Accordingly, inhibitors of this system are clinically important. Currently, tranexamic acid (TXA), a molecule that prevents plasminogen activation through blocking recruitment to target substrates, is the most widely used inhibitor for the plasminogen/plasmin system in therapeutics. However, TXA lacks efficacy on the active form of plasmin. Thus, there is a need to develop specific inhibitors that target the protease active site. Here we report the crystal structures of plasmin in complex with the novel YO (trans-4-aminomethylcyclohexanecarbonyl-l-tyrosine-n-octylamide) class of small molecule inhibitors. We found that these inhibitors form key interactions with the S1 and S3' subsites of the catalytic cleft. Here, the TXA moiety of the YO compounds inserts into the primary (S1) specificity pocket, suggesting that TXA itself may function as a weak plasmin inhibitor, a hypothesis supported by subsequent biochemical and biophysical analyses. Mutational studies reveal that F587 of the S' subsite plays a key role in mediating the inhibitor interaction. Taken together, these data provide a foundation for the future development of small molecule inhibitors to specifically regulate plasmin function in a range of diseases and disorders.

9.
Biochemistry ; 54(25): 3960-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26029848

RESUMO

Plasminogen (Plg) circulates in the host as two predominant glycoforms. Glycoform I Plg (GI-Plg) contains glycosylation sites at Asn289 and Thr346, whereas glycoform II Plg (GII-Plg) is exclusively glycosylated at Thr346. Surface plasmon resonance experiments demonstrated that Plg binding group A streptococcal M protein (PAM) exhibits comparative equal affinity for GI- and GII-Plg in the "closed" conformation (for GII-Plg, KD = 27.4 nM; for GI-Plg, KD = 37.0 nM). When Plg was in the "open" conformation, PAM exhibited an 11-fold increase in affinity for GII-Plg (KD = 2.8 nM) compared with that for GI-Plg (KD = 33.2 nM). The interaction of PAM with Plg is believed to be mediated by lysine binding sites within kringle (KR) 2 of Plg. PAM-GI-Plg interactions were fully inhibited with 100 mM lysine analogue ε-aminocaproic acid (εACA), whereas PAM-GII-Plg interactions were shown to be weakened but not inhibited in the presence of 400 mM εACA. In contrast, binding to the KR1-3 domains of GII-Plg (angiostatin) by PAM was completely inhibited in the presence 5 mM εACA. Along with PAM, emm pattern D GAS isolates express a phenotypically distinct SK variant (type 2b SK) that requires Plg ligands such as PAM to activate Plg. Type 2b SK was able to generate an active site and activate GII-Plg at a rate significantly higher than that of GI-Plg when bound to PAM. Taken together, these data suggest that GAS selectively recruits and activates GII-Plg. Furthermore, we propose that the interaction between PAM and Plg may be partially mediated by a secondary binding site outside of KR2, affected by glycosylation at Asn289.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/enzimologia , Streptococcus pyogenes/metabolismo , Aminocaproatos/química , Aminocaproatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ativação Enzimática , Glicosilação , Humanos , Kringles , Plasminogênio/química , Plasminogênio/genética , Ligação Proteica , Conformação Proteica , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação
10.
J Biol Chem ; 289(31): 21684-93, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24962580

RESUMO

A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Dimerização , Humanos , Dados de Sequência Molecular , Conformação Proteica , Streptococcus pyogenes/metabolismo , Ultracentrifugação , Fatores de Virulência/química
11.
Cell Rep ; 1(3): 185-90, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22832192

RESUMO

Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.


Assuntos
Plasminogênio/química , Cristalografia por Raios X , Ativação Enzimática , Glicosilação , Humanos , Kringles , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...