Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712254

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

2.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713535

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

3.
Nucleic Acids Res ; 52(D1): D213-D221, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953365

RESUMO

Quantification of RNA splicing variations based on RNA-Sequencing can reveal tissue- and disease-specific splicing patterns. To study such splicing variations, we introduce MAJIQlopedia, an encyclopedia of splicing variations that encompasses 86 human tissues and 41 cancer datasets. MAJIQlopedia reports annotated and unannotated splicing events for a total of 486 175 alternative splice junctions in normal tissues and 338 317 alternative splice junctions in cancer. This database, available at https://majiq.biociphers.org/majiqlopedia/, includes a user-friendly interface that provides graphical representations of junction usage quantification for each junction across all tissue or cancer types. To demonstrate case usage of MAJIQlopedia, we review splicing variations in genes WT1, MAPT and BIN1, which all have known tissue or cancer-specific splicing variations. We also use MAJIQlopedia to highlight novel splicing variations in FDX1 and MEGF9 in normal tissues, and we uncover a novel exon inclusion event in RPS6KA6 that only occurs in two cancer types. Users can download the database, request the addition of data to the webtool, or install a MAJIQlopedia server to integrate proprietary data. MAJIQlopedia can serve as a reference database for researchers seeking to understand what splicing variations exist in genes of interest, and those looking to understand tissue- or cancer-specific splice isoform usage.


Assuntos
Processamento Alternativo , Neoplasias , Splicing de RNA , Humanos , Processamento Alternativo/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Análise de Sequência de RNA
4.
J Dev Biol ; 11(3)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37489330

RESUMO

Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues.

5.
Nat Commun ; 14(1): 63, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599821

RESUMO

Identification of cancer sub-types is a pivotal step for developing personalized treatment. Specifically, sub-typing based on changes in RNA splicing has been motivated by several recent studies. We thus develop CHESSBOARD, an unsupervised algorithm tailored for RNA splicing data that captures "tiles" in the data, defined by a subset of unique splicing changes in a subset of patients. CHESSBOARD allows for a flexible number of tiles, accounts for uncertainty of splicing quantification, and is able to model missing values as additional signals. We first apply CHESSBOARD to synthetic data to assess its domain specific modeling advantages, followed by analysis of several leukemia datasets. We show detected tiles are reproducible in independent studies, investigate their possible regulatory drivers and probe their relation to known AML mutations. Finally, we demonstrate the potential clinical utility of CHESSBOARD by supplementing mutation based diagnostic assays with discovered splicing profiles to improve drug response correlation.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Teorema de Bayes , Splicing de RNA/genética , Neoplasias/diagnóstico , Neoplasias/genética , Fatores de Processamento de RNA/genética , Mutação , Processamento Alternativo/genética
6.
iScience ; 25(10): 105205, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36238894

RESUMO

The epithelial splicing regulatory proteins, ESRP1 and ESRP2, are essential for mammalian development through the regulation of a global program of alternative splicing of genes involved in the maintenance of epithelial cell function. To further inform our understanding of the molecular functions of ESRP1, we performed enhanced crosslinking immunoprecipitation coupled with high-throughput sequencing (eCLIP) in epithelial cells of mouse epidermis. The genome-wide binding sites of ESRP1 were integrated with RNA-Seq analysis of alterations in splicing and total gene expression that result from epidermal ablation of Esrp1 and Esrp2. These studies demonstrated that ESRP1 functions in splicing regulation occur primarily through direct binding in a position-dependent manner to promote either exon inclusion or skipping. In addition, we also identified widespread binding of ESRP1 in 3' and 5' untranslated regions (UTRs) of genes involved in epithelial cell function, suggesting that its post-transcriptional functions extend beyond splicing regulation.

7.
Nat Commun ; 13(1): 5570, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138008

RESUMO

Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Sítios de Splice de RNA , Processamento Alternativo/genética , Antígenos CD19/genética , Antígenos CD19/metabolismo , Epitopos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Mutagênese/genética , Mutação , Recidiva Local de Neoplasia/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Isoformas de Proteínas/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
PLoS Genet ; 18(9): e1010416, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129965

RESUMO

Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Espermatogônias , Animais , Diferenciação Celular/genética , Masculino , Mamíferos/genética , Meiose/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo
9.
Genome Biol ; 23(1): 117, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581644

RESUMO

BACKGROUND: Cancer is a set of diseases characterized by unchecked cell proliferation and invasion of surrounding tissues. The many genes that have been genetically associated with cancer or shown to directly contribute to oncogenesis vary widely between tumor types, but common gene signatures that relate to core cancer pathways have also been identified. It is not clear, however, whether there exist additional sets of genes or transcriptomic features that are less well known in cancer biology but that are also commonly deregulated across several cancer types. RESULTS: Here, we agnostically identify transcriptomic features that are commonly shared between cancer types using 13,461 RNA-seq samples from 19 normal tissue types and 18 solid tumor types to train three feed-forward neural networks, based either on protein-coding gene expression, lncRNA expression, or splice junction use, to distinguish between normal and tumor samples. All three models recognize transcriptome signatures that are consistent across tumors. Analysis of attribution values extracted from our models reveals that genes that are commonly altered in cancer by expression or splicing variations are under strong evolutionary and selective constraints. Importantly, we find that genes composing our cancer transcriptome signatures are not frequently affected by mutations or genomic alterations and that their functions differ widely from the genes genetically associated with cancer. CONCLUSIONS: Our results highlighted that deregulation of RNA-processing genes and aberrant splicing are pervasive features on which core cancer pathways might converge across a large array of solid tumor types.


Assuntos
Aprendizado Profundo , Neoplasias , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Neoplasias/genética , Neoplasias/patologia , Transcriptoma
10.
Blood Adv ; 6(23): 5956-5968, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622975

RESUMO

The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and ß-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and ß-thalassemia.


Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Talassemia beta/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Proteínas de Ligação a RNA/genética
11.
Blood Cancer Discov ; 3(2): 103-115, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015683

RESUMO

Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Δex5-6 splice isoform, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Δex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE: The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies. See related commentary by Bourcier and Abdel-Wahab, p. 87. This article is highlighted in the In This Issue feature, p. 85.


Assuntos
Deriva e Deslocamento Antigênicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Epitopos/uso terapêutico , Humanos , Imunoterapia , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética
12.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876749

RESUMO

Most genes associated with acute myeloid leukemia (AML) are mutated in less than 10% of patients, suggesting that alternative mechanisms of gene disruption contribute to this disease. Here, we find a set of splicing events that alter the expression of a subset of AML-associated genes independent of known somatic mutations. In particular, aberrant splicing triples the number of patients with reduced functional EZH2 compared with that predicted by somatic mutation alone. In addition, we unexpectedly find that the nonsense-mediated decay factor DHX34 exhibits widespread alternative splicing in sporadic AML, resulting in a premature stop codon that phenocopies the loss-of-function germline mutations observed in familial AML. Together, these results demonstrate that classical mutation analysis underestimates the burden of functional gene disruption in AML and highlight the importance of assessing the contribution of alternative splicing to gene dysregulation in human disease.


Assuntos
Processamento Alternativo , Leucemia Mieloide Aguda/genética , Mutação , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Genótipo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/genética , RNA Helicases/metabolismo
13.
Cell Rep ; 33(6): 108373, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176136

RESUMO

Genome-wide profiling of nascent RNA has become a fundamental tool to study transcription regulation. Unlike steady-state RNA-sequencing (RNA-seq), nascent RNA profiling mirrors real-time activity of RNA polymerases and provides an accurate readout of transcriptome-wide variations. Some species of nuclear RNAs (i.e., large intergenic noncoding RNAs [lincRNAs] and eRNAs) have a short half-life and can only be accurately gauged by nascent RNA techniques. Furthermore, nascent RNA-seq detects post-cleavage RNA at termination sites and promoter-associated antisense RNAs, providing insights into RNA polymerase II (RNAPII) dynamics and processivity. Here, we present a run-on assay with 4-thio ribonucleotide (4-S-UTP) labeling, followed by reversible biotinylation and affinity purification via streptavidin. Our protocol allows streamlined sample preparation within less than 3 days. We named the technique fastGRO (fast Global Run-On). We show that fastGRO is highly reproducible and yields a more complete and extensive coverage of nascent RNA than comparable techniques can. Importantly, we demonstrate that fastGRO is scalable and can be performed with as few as 0.5 × 106 cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética , Humanos
14.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999954

RESUMO

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Assuntos
Transtorno Autístico/fisiopatologia , Disfunção Cognitiva/patologia , Fator de Iniciação Eucariótico 4G/fisiologia , Éxons/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neuroblastoma/patologia , Neurônios/patologia , Animais , Comportamento Animal , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogênese , Neurônios/metabolismo , Biossíntese de Proteínas , Splicing de RNA , Células Tumorais Cultivadas
15.
Am J Hum Genet ; 105(5): 987-995, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31587868

RESUMO

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.


Assuntos
Disfunção Cognitiva/genética , Mutação de Sentido Incorreto/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Regulação para Baixo/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Genes Ligados ao Cromossomo X/genética , Histona Desacetilases/genética , Humanos , Alinhamento de Sequência , Transcriptoma/genética , Peixe-Zebra/genética
16.
Nat Rev Genet ; 20(1): 51-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390048

RESUMO

Heredity has a major role in autism spectrum disorder (ASD), yet underlying causal genetic variants have been defined only in a fairly small subset of cases. The enormous genetic heterogeneity associated with ASD emphasizes the importance of identifying convergent pathways and molecular mechanisms that are responsible for this disorder. We review how recent transcriptomic analyses have transformed our understanding of pathway convergence in ASD. In particular, deep RNA sequencing coupled with downstream investigations has revealed that a substantial fraction of autistic brains possess distinct transcriptomic signatures. These signatures are in part a consequence of altered neuronal activity and have a particular impact on pre-mRNA alternative splicing patterns.


Assuntos
Transtorno do Espectro Autista , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA , RNA Mensageiro/metabolismo , Transcriptoma , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Humanos , RNA Mensageiro/genética , Análise de Sequência de RNA
17.
Genome Res ; 27(10): 1759-1768, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855263

RESUMO

Alternative splicing (AS) generates remarkable regulatory and proteomic complexity in metazoans. However, the functions of most AS events are not known, and programs of regulated splicing remain to be identified. To address these challenges, we describe the Vertebrate Alternative Splicing and Transcription Database (VastDB), the largest resource of genome-wide, quantitative profiles of AS events assembled to date. VastDB provides readily accessible quantitative information on the inclusion levels and functional associations of AS events detected in RNA-seq data from diverse vertebrate cell and tissue types, as well as developmental stages. The VastDB profiles reveal extensive new intergenic and intragenic regulatory relationships among different classes of AS and previously unknown and conserved landscapes of tissue-regulated exons. Contrary to recent reports concluding that nearly all human genes express a single major isoform, VastDB provides evidence that at least 48% of multiexonic protein-coding genes express multiple splice variants that are highly regulated in a cell/tissue-specific manner, and that >18% of genes simultaneously express multiple major isoforms across diverse cell and tissue types. Isoforms encoded by the latter set of genes are generally coexpressed in the same cells and are often engaged by translating ribosomes. Moreover, they are encoded by genes that are significantly enriched in functions associated with transcriptional control, implying they may have an important and wide-ranging role in controlling cellular activities. VastDB thus provides an unprecedented resource for investigations of AS function and regulation.


Assuntos
Processamento Alternativo , Bases de Dados de Ácidos Nucleicos , Éxons , Redes Reguladoras de Genes , Isoformas de Proteínas , Animais , Galinhas , Humanos , Camundongos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética
18.
Mol Cell ; 64(6): 1023-1034, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984743

RESUMO

A key challenge in understanding and ultimately treating autism is to identify common molecular mechanisms underlying this genetically heterogeneous disorder. Transcriptomic profiling of autistic brains has revealed correlated misregulation of the neuronal splicing regulator nSR100/SRRM4 and its target microexon splicing program in more than one-third of analyzed individuals. To investigate whether nSR100 misregulation is causally linked to autism, we generated mutant mice with reduced levels of this protein and its target splicing program. Remarkably, these mice display multiple autistic-like features, including altered social behaviors, synaptic density, and signaling. Moreover, increased neuronal activity, which is often associated with autism, results in a rapid decrease in nSR100 and splicing of microexons that significantly overlap those misregulated in autistic brains. Collectively, our results provide evidence that misregulation of an nSR100-dependent splicing network controlled by changes in neuronal activity is causally linked to a substantial fraction of autism cases.


Assuntos
Processamento Alternativo , Transtorno do Espectro Autista/genética , Haploinsuficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Éxons , Feminino , Expressão Gênica , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Reflexo de Sobressalto , Transmissão Sináptica
19.
Genes Dev ; 29(7): 746-59, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838543

RESUMO

Alternative splicing (AS) generates vast transcriptomic complexity in the vertebrate nervous system. However, the extent to which trans-acting splicing regulators and their target AS regulatory networks contribute to nervous system development is not well understood. To address these questions, we generated mice lacking the vertebrate- and neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4). Loss of nSR100 impairs development of the central and peripheral nervous systems in part by disrupting neurite outgrowth, cortical layering in the forebrain, and axon guidance in the corpus callosum. Accompanying these developmental defects are widespread changes in AS that primarily result in shifts to nonneural patterns for different classes of splicing events. The main component of the altered AS program comprises 3- to 27-nucleotide (nt) neural microexons, an emerging class of highly conserved AS events associated with the regulation of protein interaction networks in developing neurons and neurological disorders. Remarkably, inclusion of a 6-nt, nSR100-activated microexon in Unc13b transcripts is sufficient to rescue a neuritogenesis defect in nSR100 mutant primary neurons. These results thus reveal critical in vivo neurodevelopmental functions of nSR100 and further link these functions to a conserved program of neuronal microexon splicing.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Neurogênese/genética , Splicing de RNA/genética , Animais , Embrião de Mamíferos , Éxons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutação , Análise de Sequência de RNA
20.
Cell ; 159(7): 1511-23, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525873

RESUMO

Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.


Assuntos
Processamento Alternativo , Transtornos Globais do Desenvolvimento Infantil/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Humanos , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurogênese , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de RNA , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...