Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769851

RESUMO

Perovskite nanocrystals have excellent optical properties but suffer from environmental instability and production up-scaling which limit their commercial application. Here, we report the gram-scale ultrasound-mediated synthesis of silane passivated CsPbBr3 nanocrystals using (3-aminopropyl) triethoxysilane (APTS) as the primary surface ligand surface. The surface engineering endowed the CsPbBr3@SiOR NCs with extended environmental stability, a narrow emission bandwidth and a high photoluminescence quantum yield (PLQY > 75%). Thanks to these excellent optical properties, high-efficiency lateral and vertical photodetectors were fabricated. In particular, the layered vertical photodiode composed of ITO/Ga2O3/CsPbBr3/Au exhibited a broadband photoresponse from 350-700 nm with a responsivity peaking at 44.5.1 A W-1 and specific detectivity above 1013 Jones when illuminated at 470 nm wavelength and biased at +5 V. These results correspond to the best-in-class performance perovskite nanocrystal PD and confirm the extraordinary potential of CsPbBr3@SiOR for the development of efficient optoelectronic devices.

2.
ACS Appl Mater Interfaces ; 15(47): 55073-55081, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967325

RESUMO

Self-healing materials inspire the next generation of multifunctional wearables and Internet of Things appliances. They expand the realm of thin film fabrication, enabling seamless conformational coverage irrespective of the shape complexity and surface geometry for electronic skins, smart textiles, soft robotics, and energy storage devices. Within this context, the layer-by-layer (LbL) technique is versatile for homogeneously dispersing materials onto various matrices. Moreover, it provides molecular level thickness control and coverage on practically any surface, with poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA) being the most used materials primarily employed in self-healing LbL structures operating at room temperature. However, achieving thin film composites displaying controlled conductivity and healing ability is still challenging under ambient conditions. Here, PEI and PAA are mixed with conductive fillers (gold nanorods, poly(3,4-ethylene dioxythiophene): polystyrenesulfonate (PEDOT:PSS), reduced graphene oxides, and multiwalled carbon nanotubes) in distinct LbL film architectures. Electrical (AC and DC), optical (Raman spectroscopy), and mechanical (nanoindentation) measurements are used for characterizing composite structures and properties. A delicate balance among electrical, mechanical, and structural characteristics must be accomplished for a controlled design of conductive self-healing composites. As a proof-of-concept, four LbL composites were chosen as sensing units in the first reported self-healing e-tongue. The sensor can easily distinguish basic tastes at low molar concentrations and differentiate trace levels of glucose in artificial sweat. The formed nanostructures enable smart coverages that have unique features for solving current technological challenges.

4.
ACS Appl Mater Interfaces ; 13(24): 28049-28056, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106674

RESUMO

Perovskite-based semiconductors, such as methylammonium and cesium lead halides (MPbX3: M = CH3NH3+ or Cs+; X = I-, Br-, or Cl-), have attracted immense attention for several applications, including radiation detection, due to their excellent electronic and optical properties.1,2,3,4,5,6 In addition, the combination of perovskites with other materials enables unique device structures. For example, robust and reliable diodes result when combined with metal oxide semiconductors. This device can be used for detection of nonionizing and ionizing radiation. In this paper, we report a unique perovskite single-crystal-based neutron detector using a heterojunction diode based on single-crystal MAPbBr3 and gallium oxide (Ga2O3) thin film. The MAPbBr3/Ga2O3 diodes demonstrate a leakage current of ∼7 × 10-10 A/mm2, an on/off ratio of ∼102, an ideality factor of 1.41, and minimal hysteresis that enables alpha particle, gamma-ray, and neutron detection at a bias as low as (-5 V). Gamma discrimination is further improved by 85% by optimizing the thickness of the perovskite single crystal. The MAPbBr3/Ga2O3 diodes also demonstrate a neutron detection efficiency of ∼3.92% when combined with a 10B neutron conversion layer.

5.
ACS Appl Mater Interfaces ; 12(46): 51645-51653, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33167617

RESUMO

Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenides (TMDs), have attracted immense interest due to their excellent electronic and optical properties. The combination of single and multilayered 2D TMDs coupled with either Si or II-VI semiconductors can result in robust and reliable photodetectors. In this paper, we report the deposition process of MoSe2-layered films using pulsed laser deposition (PLD) over areas of 20 cm2 with a tunable band gap. Raman and X-ray diffraction indicates crystalline and highly oriented layered MoSe2. X-ray photoelectron spectroscopy shows Mo and Se present in the first few layers of the film. Rutherford backscattering demonstrates the effect of O and C on the surface and film/substrate interface of the deposited films. Ultraviolet-visible spectroscopy, Kelvin probe, photoelectron spectroscopy, and electrical measurements are used to investigate the band diagram and electrical property dependence as a function of MoSe2 layers/thickness. As the MoSe2 thickness increases from 3.5 to 11.4 nm, the band gap decreases from 1.98 to 1.75 eV, the work function increases from 4.52 to 4.72 eV, the ionization energy increases from 5.71 to 5.77 eV, the sheet resistance decreases from 541 to 56.0 kΩ, the contact resistance decreases from 187 to 54.6 Ω·cm2, and the transfer length increases from 2.27 to 61.9 nm. Transmission electron microscopy (TEM) cross-sectional images demonstrate the layered structure of the MoSe2 with an average interlayer spacing of 0.68 nm. The fabricated MoSe2-Si photodiodes demonstrate a current on/off ratio of ∼2 × 104 orders of magnification and photocurrent generation with a 22.5 ns rise time and a 190.8 ns decay time, respectively.

6.
ACS Sens ; 5(9): 2852-2857, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786382

RESUMO

This paper reports a simple and novel conformal doping strategy for microstructured silicon diodes using enriched 10B for sidewall doping while enabling enhanced neutron sensitivity. Monte-Carlo nuclear particle (MCNP) code simulations were initially used to calculate the neutron detection efficiency in the microstructured diodes as a function of geometry and pitch. A high-temperature anneal in 10B-filled diodes results in a conformal silicon p+ layer along the side walls of the trenches in the diodes. This results in large neutron detection areas and enhanced neutron detection efficiency when compared with planar detectors. With the method discussed here, a thermal neutron detection of ∼21% efficiency is achieved, which is significantly higher than the efficiency achieved in planar detectors (∼3.5%). The higher efficiency is enabled by the 10B acting as a source for conformal doping in the trenches, resulting in lower leakage current while also enabling neutron sensitivity in the microstructured diodes.


Assuntos
Dopagem Esportivo , Método de Monte Carlo , Nêutrons
7.
Environ Sci Pollut Res Int ; 27(23): 28545-28560, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32052334

RESUMO

Heavy metals are toxic especially when they are introduced into the environment due to anthropogenic activities such as metallurgy, mining, and tanning. Removing these pollutants has become a worldwide concern since they cannot be degraded into nontoxic forms causing extended effects in the ecosystems. The use of an Aspergillus australensis was evaluated in order to remove Cu2+ from simulated wastewater. The fungus was isolated from river sludges contaminated with heavy metals and was first evaluated for the determination of Cu2+ tolerance levels. Microscopic fluorescence analysis was carried out to determine the effect of Cu2+ presence on the viability, cellular components, polyhydroxyalkanoates production, and oxidative stress of the fungus, as a response to the stress caused by exposure to metal. In order to achieve copper removal, the A. australensis biomass was produced using batch cultures, and the mycelium was immobilized on a textile media in order to compare the copper-removal efficiency of live or dead biomass. The optimal values of pH and temperature for biomass production were established by using a surface response analysis. Live immobilized biomass was capable of removing Cu2+ from 1.54 ± 0.19 to 2.66 ± 0.26 mg of copper/ g of dry biomass, while values of 1.93 ± 0.03 to 2.36 ± 0.29 mg of copper/g of dry biomass were observed when dead biomass was used. As was expected, copper removal using biomass varied depending on the pH and temperature used.


Assuntos
Cobre , Poli-Hidroxialcanoatos , Adsorção , Aspergillus , Biomassa , Ecossistema , Concentração de Íons de Hidrogênio , Estresse Oxidativo
8.
ACS Appl Mater Interfaces ; 11(30): 27048-27056, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283171

RESUMO

The oxygen partial pressure during NiO deposition in reactive sputtering of a Ni target is used to control its carrier type and concentration, obtaining both n- and p-type films. Carrier concentration can be controlled, ranging from 1019 to 1014 cm-3. Films deposition is performed at 200 °C, a relatively low temperature that enables the use of glass as substrate. Experimental band diagrams for n-type NiO are obtained for the first time. Finally, a NiO homojunction is demonstrated by introducing a low carrier concentration layer in between n- and p+-type NiO layers. Layers are deposited in situ, preventing contamination and improving the interface quality, as observed by TEM. The Ni:O ratio for each layer was also obtained by analytical TEM measurements, demonstrating the impact of the oxygen partial pressure on the films' stoichiometry and the simplicity of our process to control carrier type and carrier concentration in oxide semiconductors.

9.
Polymers (Basel) ; 11(2)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30960206

RESUMO

Sorbent materials of biological origin are considered as an alternative to the use of traditional methods in order to remove heavy metals. Interest in using these materials has increased over the past years due to their low cost and friendliness to the environment. The objective of this study was to synthesize and characterize cross-linked beads made of chitosan, alginate, and mycelium of a copper-tolerant strain of Aspergillus australensis. The acute toxicity of the biocomposite beads was assessed using brine shrimp Artemia salina nauplii and the phytotoxicity was determined using lettuce (Lactuca sativa) and chili pepper 'Anaheim' (Capsicum annuum) seeds. The biosorption capacity for copper removal in simulated wastewater was also evaluated. Results showed that the biosorbent obtained had a maximal adsorption of 26.1 mg of Cu2+ per g of biocomposite, and removal efficiency was around 79%. The toxicity of simulated residual water after treatment with the biocomposite showed low toxicity toward seeds, which was highly dependent on the residual copper concentration. The toxicity of the biocomposite beads to A. salina was considered medium depending on the amount of the biocomposite, which was attributed to low pH. Biocomposite shows promise as biosorbent for the removal process of heavy metals.

10.
Biosens Bioelectron ; 128: 37-44, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30616216

RESUMO

Electrical impedance-based sensing of cell activity has become a powerful analytical tool that allows the monitoring of several relevant biological processes associated with cell evolution and morphology. In these types of biosensors, the electrode design has a direct impact on the sensitivity because it defines the capability of the biosensor to measure small changes in the impedance resulting from cell activities. Herein, impedance-based biosensors arrays with several configurations were successfully developed and used to study the impact of the electrode layout on the dynamics of cultured pre-osteoblast cells. The biosensor design was initially validated by measuring the effect of electrode design on the capacitance of a dielectric polymer (parylene) that mimics the dielectric characteristics of cell populations, results are shown in the Supplementary information section. Results from in vitro cell growth indicate that the optimized design of single electrodes with a diameter of 50 µm, are the most sensitive to cell motion whereas increasing the number of electrodes allows clear differentiation between living and dead cells after 3 h of inducing apoptosis. Apoptosis death was induced with Staurosporine, a chemical mediator of apoptosis in osteoblasts. These impedance results have been validated with optical imaging and flow cytometry analysis that were performed on parallel cultures. Frequency and electrolyte concentration effects are also discussed.


Assuntos
Técnicas Biossensoriais , Osteoblastos/citologia , Apoptose , Linhagem Celular , Humanos , Osteoblastos/química , Polímeros/química , Xilenos/química
11.
ACS Appl Mater Interfaces ; 10(51): 44862-44870, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30489058

RESUMO

Chemical vapor deposition (CVD) of two-dimensional materials has been an active area of research in recent years because it is a scalable process for obtaining thin films that can be used to fabricate devices. The growth mechanism for hexagonal boron nitride (h-BN) on metal catalyst substrates has been described to be either surface energy-driven or diffusion-driven. In this work, h-BN is grown in a CVD system on Ni single-crystal substrates as a function of Ni crystallographic orientation to clarify the competing forces acting on the growth mechanism. We observed that the thickness of the h-BN film depends on the Ni substrate orientation, with the growth rate increasing from the (100) surface to the (111) surface and the highest on the (110) surface. We associate the observed results with surface reactivity and diffusivity differences for different Ni orientations. Boron and nitrogen diffuse and precipitate from the Ni bulk to form thin multilayer h-BN. Our results serve to clarify the h-BN CVD growth mechanism which has been previously ascribed to a surface energy-driven growth mechanism.

12.
ACS Appl Mater Interfaces ; 10(44): 38159-38165, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360100

RESUMO

One of the major limitations of oxide semiconductors technology is the lack of proper p-type materials to enable devices such as pn junctions, light-emitting diodes, and photodetectors. This limitation has resulted in an increased research focus on these materials. In this work, p-type NiO x thin films with tunable optical and electrical properties as well as its dependence with oxygen pressure during pulsed laser deposition are demonstrated. The control of NiO x films resistivity ranged from ∼109 to ∼102 Ω cm, showing a p-type behavior with Eg tuning from 3.4 to 3.9 eV. Chemical composition and the resulting band diagrams are also discussed. The all-oxide NiO x-Ga2O3 pn junction showed very low leakage current, an ideality factor of ∼2, 105 on/off ratio, and 0.6 V built-in potential. Its J- V temperature dependence is also analyzed. C- V measurements demonstrate diodes with a carrier concentration of 1015 cm-3 for the Ga2O3 layer, which is fully depleted. These results show a stable, promising diode, attractive for future photoelectronic devices.

13.
Clin Implant Dent Relat Res ; 20(5): 838-847, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30110131

RESUMO

BACKGROUND: Previous studies have concluded that certain titanium oxide (TiO2 ) surface properties promote bone-forming cell attachment. However, no comprehensive studies have investigated the effects of TiO2 surface and film morphology on hard and soft tissues. PURPOSE: The aim of this study is to understand the effects of TiO2 morphology on the proliferation and differentiation of murine preosteoblasts (MC3T3-E1) and proliferation of human gingival fibroblasts (HGF-1) using in vitro experiments. MATERIALS AND METHODS: Samples were fabricated with several TiO2 thickness and crystalline structure to mimic various dental implant surfaces. in vitro analysis was performed for 1, 3, and 7 days on these samples to assess the viability of MC3T3-E1 and HGF-1 cells in contact with the modified oxide surfaces. RESULTS: Results showed that HGF-1 cells exhibited no significant difference in viability on modified oxide surfaces versus a titanium control across experiments. MC3T3-E1 cells exhibited a significantly higher viability for the modified oxide surface in 1 day experiments, but not in 3 or 7 day experiments. Alkaline phosphatase expression in MC3T3-E1 was not significantly different on modified oxide surfaces versus the control across all experiments. A slight positive trend in viability was observed for cells in contact with rougher modified oxide surfaces versus a titanium control in both cell types. CONCLUSIONS: These observations suggest that crystallinity and thickness do not affect the long-term viability of hard or soft tissue cells when compared to a cpTi surface. Therefore, treatments like anodization on implant components may not directly affect the attachment of hard or soft tissue cells in vivo.


Assuntos
Gengiva/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Titânio/efeitos adversos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Implantes Dentários/efeitos adversos , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Análise Espectral Raman , Propriedades de Superfície
14.
ACS Omega ; 2(10): 6968-6974, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457280

RESUMO

We report a simple sol-gel process for the deposition of poly(methyl methacrylate) (PMMA)-ZrO2 organic-inorganic hybrid films at low temperature and studied their properties as a function of the molar ratios of the precursors in the hybrid sol-gel solution, which included zirconium propoxide as the inorganic (zirconia) source, methyl methacrylate as the organic source, and 3-trimethoxy-silyl-propyl-methacrylate (TMSPM) as the coupling agent to enhance the compatibility between the organic and inorganic phases. The hybrid thin-film deposition was done on glass slide substrates by the dip-coating method. After deposition, the films were heat-treated at 100 °C for 24 h. The analysis of the hybrid films included Fourier transform infrared spectroscopy to identify their chemical groups and thermogravimetric analysis to determine the content of their organic and inorganic components. In addition, capacitance-voltage (C-V) and current-voltage (I-V) curves in metal-insulator-metal structures, using gold as metal contacts, were measured to find the dielectric constant and leakage current of the PMMA-ZrO2 hybrid films. Finally, because of their adequate dielectric characteristics, single hybrid layers were deposited on indium tin oxide-coated glass substrates and were tested as gate dielectric in thin-film transistors (TFTs), using sputtered ZnO layers as the semiconductor active channel. We measured the output electrical response and transfer characteristics of these hybrid dielectric gate-based devices and determined their main electrical parameters as a function of the TMSPM content in the hybrid dielectric gate layer. The better TFT electrical behavior presents field effect mobility of 0.48 cm2/V s, low threshold voltage of 3.3 V, and on/off current ratio of 105, and it was obtained by using PMMA-ZrO2 with 0.3 TMSPM content as the gate dielectric layer. The values obtained for the electrical parameters show that PMMA-ZrO2 hybrid films are quite suitable for dielectric gate applications in TFTs.

15.
ACS Appl Mater Interfaces ; 8(36): 24205-11, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27553365

RESUMO

The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

16.
ACS Nano ; 10(6): 6054-61, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27219117

RESUMO

A scalable and catalyst-free method to deposit stoichiometric molybdenum disulfide (MoS2) films over large areas is reported, with the maximum area limited by the size of the substrate holder. The method allows deposition of MoS2 layers on a wide range of substrates without any additional surface preparation, including single-crystal (sapphire and quartz), polycrystalline (HfO2), and amorphous (SiO2) substrates. The films are deposited using carefully designed MoS2 targets fabricated with excess sulfur and variable MoS2 and sulfur particle size. Uniform and layered MoS2 films as thin as two monolayers, with an electrical resistivity of 1.54 × 10(4) Ω cm(-1), were achieved. The MoS2 stoichiometry was confirmed by high-resolution Rutherford backscattering spectrometry. With the method reported here, in situ graded MoS2 films ranging from ∼1 to 10 monolayers can be deposited.

17.
ACS Nano ; 9(9): 9124-33, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26301428

RESUMO

Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication.

18.
ACS Appl Mater Interfaces ; 7(9): 5358-66, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25691363

RESUMO

We report on highly stretchable piezoelectric structures of electrospun PVDF-TrFE nanofibers. We fabricated nanofibrous PVDF-TrFE yarns via twisting their electrospun ribbons. Our results show that the twisting process not only increases the failure strain but also increases overall strength and toughness. The nanofibrous yarns achieved a remarkable energy to failure of up to 98 J/g. Through overtwisting process, we fabricated polymeric coils out of twisted yarns that stretched up to ∼740% strain. This enhancement in mechanical properties is likely induced by increased interactions between nanofibers, contributed by friction and van der Waals interactions, as well as favorable surface charge (Columbic) interactions as a result of piezoelectric effect, for which we present a theoretical model. The fabricated yarns and coils show great promise for applications in high-performance lightweight structural materials and superstretchable piezoelectric devices and flexible energy harvesting applications.

19.
Carbon N Y ; 632013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24347671

RESUMO

A facile method for preparing functionalized graphene oxide single layers with nitroxide groups is reported herein. Highly oxidized graphite oxide (GO=90.6%) was obtained, slightly modifying an improved Hummer's method. Oxoammonium salts (OS) were investigated to introduce nitroxide groups to GO, resulting in a one-step functionalization and exfoliation. The mechanisms of functionalization/exfoliation are proposed, where the oxidation of aromatic alcohols to ketone groups, and the formation of alkoxyamine species are suggested. Two kinds of functionalized graphene oxide layers (GOFT1 and GOFT2) were obtained by controlling the amount of OS added. GOFT1 and GOFT2 exhibited a high interlayer spacing (d0001 = 1.12nm), which was determined by X-ray diffraction. The presence of new chemical bonds C-N (~9.5 %) and O-O (~4.3 %) from nitroxide attached onto graphene layers were observed by X-ray photoelectron spectroscopy. Single-layers of GOFT1 were observed by HRTEM, exhibiting amorphous and crystalline zones at a 50:50 ratio; in contrast, layers of GOFT2 exhibited a fully amorphous surface. Fingerprint of GOFT1 single layers was obtained by electron diffraction at several tilts. Finally, the potential use of these materials within Nylon 6 matrices was investigated, where an unusual simultaneous increase in tensile stress, tensile strain and Young's modulus was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...