Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 103(6): 1140-1151, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801551

RESUMO

BACKGROUND: Storage of donor hearts in cardioplegic solutions supplemented with conditioning agents activating endogenous mitochondrial protective signaling enhanced their postreperfusion recovery. The present study investigates the role of timing and duration of cardiac exposure to cyclosporine A (CsA), another putative mitochondrial protectant, on cardiac functional recovery and potential mechanisms of CsA action in an isolated working rat heart model of donor heart retrieval and storage. METHODS: After measurement of baseline function, hearts were arrested and stored for 6 hours at 4°C in either Celsior alone or Celsior + CsA (0.2 µM), then reperfused for 45 minutes in Krebs solution, when functional recovery was assessed. Two additional groups of Celsior-alone stored hearts were exposed to 0.2 µM CsA for the initial 15 minutes (nonworking period) or the full 45-minute period of reperfusion. Coronary effluent was collected pre- and poststorage for assessment of lactate dehydrogenase release. Tissue samples were collected at the end of each study for immunoblotting and histological studies. RESULTS: CsA supplementation during cold storage or the first 15-minute reperfusion significantly improved functional recovery and significantly increased phospho-AMPKαThr172 and phospho-ULK-1Ser757. Hearts exposed to CsA for 45 minutes at reperfusion recovered poorly with no phospho-AMP-activated protein kinase α activation, decreased phospho-eNOSSer633, and decreased mitochondrial cytochrome c content with increased lactate dehydrogenase release. CONCLUSIONS: Inclusion of CsA during cold storage is cardioprotective. Effects of CsA addition to the perfusate during reperfusion were time dependent, with benefits at 15 minutes but not 45 minutes of reperfusion. The toxic effect with the presence of CsA for the full 45-minute reperfusion is associated with impaired mitochondrial integrity and decreased eNOS phosphorylation.


Assuntos
Soluções Cardioplégicas/farmacologia , Ciclosporina/farmacologia , Transplante de Coração , Coração/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Preservação de Órgãos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Soluções Cardioplégicas/toxicidade , Isquemia Fria , Ciclosporina/toxicidade , Dissacarídeos/farmacologia , Dissacarídeos/toxicidade , Eletrólitos/farmacologia , Eletrólitos/toxicidade , Glutamatos/farmacologia , Glutamatos/toxicidade , Glutationa/farmacologia , Glutationa/toxicidade , Coração/fisiopatologia , Transplante de Coração/efeitos adversos , Histidina/farmacologia , Histidina/toxicidade , Preparação de Coração Isolado , Masculino , Manitol/farmacologia , Manitol/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Soluções para Preservação de Órgãos/toxicidade , Fosforilação , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
2.
PLoS One ; 13(10): e0205850, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312353

RESUMO

The ryanodine receptor antagonist dantrolene inhibits calcium release from the sarcoplasmic reticulum and reduces cardiac ischaemia-reperfusion injury (IRI) in global warm ischaemia models however the cardioprotective potential of dantrolene under hypothermic conditions is unknown. This study addresses whether the addition of dantrolene during cardioplegia and hypothermic storage of the donor heart can improve functional recovery and reduce IRI. Using an ex vivo isolated working heart model, Wistar rat (3 month and 12 month) hearts were perfused to acquire baseline haemodynamic measurements of aortic flow, coronary flow, cardiac output, pulse pressure and heart rate. Hearts were arrested and stored in Celsior preservation solution supplemented with 0.2-40 µM dantrolene for 6 hours at 4°C, then reperfused (15 min Langendorff, 30 min working mode). In 3-month hearts, supplementation with 1 µM dantrolene significantly improved aortic flow and cardiac output compared to unsupplemented controls however lactate dehydrogenase (LDH) release and contraction bands were comparable. In contrast, 40 µM dantrolene-supplementation yielded poor cardiac recovery, increased post-reperfusion LDH but reduced contraction bands. All 3-month hearts stored in dantrolene displayed significantly reduced cleaved-caspase 3 intensities compared to controls. Analysis of cardioprotective signalling pathways showed no changes in AMPKα however dantrolene increased STAT3 and ERK1/2 signaling in a manner unrelated to functional recovery and AKT activity was reduced in 1 µM dantrolene-stored hearts. In contrast to 3-month hearts, no significant improvements were observed in the functional recovery of 12-month hearts following prolonged storage in 1 µM dantrolene. CONCLUSIONS: Dantrolene supplementation at 1 µM during hypothermic heart preservation improved functional recovery of young, but not older (12 month) hearts. Although the molecular mechanisms responsible for dantrolene-mediated cardioprotection are unclear, our studies show no correlation between improved functional recovery and SAFE and RISK pathway activation.


Assuntos
Dantroleno/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Animais , Temperatura Baixa , Criopreservação , Suplementos Nutricionais , Hemodinâmica , Técnicas In Vitro , Masculino , Preservação de Órgãos , Soluções para Preservação de Órgãos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...