Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Genes (Basel) ; 14(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36833271

RESUMO

The Anopheles subgenus Kerteszia is a poorly understood group of mosquitoes that includes several species of medical importance. Although there are currently twelve recognized species in the subgenus, previous studies have shown that this is likely to be an underestimate of species diversity. Here, we undertake a baseline study of species delimitation using the barcode region of the mtDNA COI gene to explore species diversity among a geographically and taxonomically diverse range of Kerteszia specimens. Beginning with 10 of 12 morphologically identified Kerteszia species spanning eight countries, species delimitation analyses indicated a high degree of cryptic diversity. Overall, our analyses found support for at least 28 species clusters within the subgenus Kerteszia. The most diverse taxon was Anopheles neivai, a known malaria vector, with eight species clusters. Five other species taxa showed strong signatures of species complex structure, among them Anopheles bellator, which is also considered a malaria vector. There was some evidence for species structure within An. homunculus, although the results were equivocal across delimitation analyses. The current study, therefore, suggests that species diversity within the subgenus Kerteszia has been grossly underestimated. Further work will be required to build on this molecular characterization of species diversity and will rely on genomic level approaches and additional morphological data to test these species hypotheses.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Mosquitos Vetores , DNA Mitocondrial/genética
2.
Malar J ; 18(1): 384, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791331

RESUMO

BACKGROUND: Knockdown resistance (kdr) is a well-characterized target-site insecticide resistance mechanism that is associated with DDT and pyrethroid resistance. Even though insecticide resistance to pyrethroids and DDT have been reported in Anopheles albimanus, Anopheles benarrochi sensu lato (s.l.), Anopheles darlingi, Anopheles nuneztovari s.l., and Anopheles pseudopunctipennis s.l. malaria vectors in Latin America, there is a knowledge gap on the role that kdr resistance mechanisms play in this resistance. The aim of this study was to establish the role that kdr mechanisms play in pyrethroid and DDT resistance in the main malaria vectors in Colombia, in addition to previously reported metabolic resistance mechanisms, such as mixed function oxidases (MFO) and nonspecific esterases (NSE) enzyme families. METHODS: Surviving (n = 62) and dead (n = 67) An. nuneztovari s.l., An. darlingi and An. albimanus mosquitoes exposed to diagnostic concentrations of DDT and pyrethroid insecticides were used to amplify and sequence a ~ 225 bp fragment of the voltage-gated sodium channels (VGSC) gene. This fragment spanning codons 1010, 1013 and 1014 at the S6 segment of domain II to identify point mutations, which have been associated with insecticide resistance in different species of Anopheles malaria vectors. RESULTS: No kdr mutations were detected in the coding sequence of this fragment in 129 samples, 62 surviving mosquitoes and 67 dead mosquitoes, of An. darlingi, An. nuneztovari s.l. and An. albimanus. CONCLUSION: Mutations in the VGSC gene, most frequently reported in other species of the genus Anopheles resistant to pyrethroid and DDT, are not associated with the low-intensity resistance detected to these insecticides in some populations of the main malaria vectors in Colombia. These results suggest that metabolic resistance mechanisms previously reported in these populations might be responsible for the resistance observed.


Assuntos
Anopheles/genética , DDT/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Piretrinas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Colômbia , Malária , Especificidade da Espécie
3.
Int Arch Allergy Immunol ; 179(2): 89-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30904917

RESUMO

BACKGROUND: Papular urticaria (PU) is a common insect bite skin hypersensitivity in tropical countries. In order to gain insight into its causal allergens, we aimed to evaluate cellular and humoral immune responses to the recombinant salivary antigen Cte f 2 from the cat flea Ctenocephalides felis. METHOD: Sixty patients with PU and 27 healthy controls were included in this study. Specific IgE, IgG, IgG1, and IgG4 against Cte f 2 and C. felis extract were determined by ELISA. The T-cell response was analyzed using a carboxyfluorescein succinimidyl ester (CFSE)-based dilution assay and Th1/Th2/Th17 cytokine measurements. In addition, a proteomic analysis of IgG and IgE reactive spots of C. felis extract was performed. RESULTS: The frequency of IgE sensitization to Cte f 2 was similar between patients (36.7%) and controls (40.7%). The specific IgE, IgG1, and IgG4 responses to Cte f 2 and C. felis extract were not significantly different between patients and controls. Among the 3 conditions (i.e., Cte f 2, C. felis extract, and only medium) Cte f 2 was the strongest inducer of CD3+CD4+ proliferation in the patients; however, the mean response was not significantly different from those in controls (Cte f 2: 4.5 vs. 2.5%; p = 0.46). No salivary proteins were identified in C. felis, and most of the spots were identified as muscle-skeletal components (tropomyosin, actin, myosin, and ankirin). CONCLUSIONS: Cte f 2 induces IgE and IgG production as well as T-cell proliferation in children living in a geographical area where PU induced by a flea bite is common. The use of C. felis extract is not recommended for the study of bite-induced hypersensitivity disease since salivary antigens are not well represented.


Assuntos
Alérgenos/imunologia , Ctenocephalides/imunologia , Imunidade Celular , Imunidade Humoral , Dermatopatias Vesiculobolhosas/imunologia , Urticária/imunologia , Alérgenos/química , Sequência de Aminoácidos , Animais , Artrópodes/imunologia , Criança , Citocinas/metabolismo , Feminino , Humanos , Imunização , Imunoglobulina E/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Proteômica/métodos , Dermatopatias Vesiculobolhosas/diagnóstico , Dermatopatias Vesiculobolhosas/metabolismo , Urticária/diagnóstico , Urticária/metabolismo
4.
Biomed Res Int ; 2018: 9163543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228990

RESUMO

Insecticide resistance in malaria vectors threatens malaria prevention and control efforts. In Colombia the three primary vectors, Anopheles darlingi, An. nuneztovari s.l., and An. albimanus, have reported insecticide resistance to pyrethroids, organophosphates, carbamates, and DDT; however, the insecticide resistance monitoring is not continuous, and the data on the prevalence of resistance is scarce and geographically limited. We describe the resistance levels and intensity of previously detected resistant populations among primary malaria vectors from the most endemic malaria areas in Colombia. The study was carried out in 10 localities of five states in Colombia. Bioassays were carried out following the methodology of CDC Bottle Bioassay using the discriminating concentration and in order to quantify the intensity the specimens were exposed to 2, 5, and 10X discriminating concentrations. Five insecticides were tested: deltamethrin, lambda-cyhalothrin, alpha-cypermethrin, permethrin, and DDT. The results provide evidence of low resistance intensity and resistance highly localized to pyrethroids and DDT in key malaria vectors in Colombia. This may not pose a threat to malaria control yet but frequent monitoring is needed to follow the evolution of insecticide resistance.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Colômbia , DDT , Insetos Vetores
5.
Malar J ; 15(1): 407, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515166

RESUMO

BACKGROUND: A proper identification of malaria vectors is essential for any attempt to control this disease. Between 40 and 47 Anopheles species have been recorded in Colombia, and eight species complexes have been identified in the last decade. An update of Anopheles species distribution and its relationship with malaria is required, particularly for newly identified members of species complexes. METHODS: A cross-sectional entomological study was conducted at 70 localities in the highest malaria transmission areas in Colombia. In each locality, immature and adult mosquitoes were collected. All specimens were determined using morphological characters and confirmed used restriction profiles of Internal Transcribed Spacer 2 (PCR-RFLP-ITS2), and Cytochrome c Oxidase I (COI) sequence gene. To detect natural Plasmodium infections, enzyme-linked immunosorbent assay and nested PCR analysis were used. Distribution of Anopheles species was spatially associated with malaria incidence. RESULTS: A total of 1736 larvae and 12,052 adult mosquitoes were determined in the 70 localities. Thirteen Anopheles species were identified. COI sequence analysis suggested 4 new lineages for Colombia: for Anopheles albimanus (An. albimanus B), Anopheles pseudopunctipennis s.l., Anopheles neivai (An. neivai nr. neivai 4), and Anopheles apicimacula. Two members of species complexes were identified, as: Anopheles nuneztovari C, and Anopheles albitarsis I. Another seven species were confirmed. Four mosquitoes were infected with Plasmodium species, An. albimanus B and An. nuneztovari C. In Northwest of Colombia, An. nuneztovari C, An. albimanus, and Anopheles darlingi were present in the municipalities with highest annual parasitic index (API) (>35 cases/1000 inhabitants). In the north of South Pacific coast, with a similar API, An. nuneztovari C were widely distributed inland, and the main species in coastal regions were An. albimanus B and An. neivai s.l. In the South Pacific coast bordering with Ecuador, 3 Anopheles species were found in municipalities with high API (15-88 cases/1000 inhabitants): An. albimanus B, Anopheles calderoni and An. neivai s.l. CONCLUSIONS: In the highest malaria areas of Colombia, 13 Anopheles species and four new lineages were found, which highlights the need for updating the species distribution. A DNA barcode analysis allowed the taxonomic identification to be refined, particularly for species complexes, and to improve the further understanding of their relation with malaria transmission.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Malária/epidemiologia , Mosquitos Vetores/classificação , Mosquitos Vetores/crescimento & desenvolvimento , Filogeografia , Topografia Médica , Animais , Análise por Conglomerados , Colômbia/epidemiologia , Estudos Transversais , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Incidência , Masculino , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Análise Espacial
6.
BMC Public Health ; 16: 221, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940004

RESUMO

BACKGROUND: Malaria control in South America has vastly improved in the past decade, leading to a decrease in the malaria burden. Despite the progress, large parts of the continent continue to be at risk of malaria transmission, especially in northern South America. The objectives of this study were to assess the risk of malaria transmission and vector exposure in northern South America using multi-criteria decision analysis. METHODS: The risk of malaria transmission and vector exposure in northern South America was assessed using multi-criteria decision analysis, in which expert opinions were taken on the key environmental and population risk factors. RESULTS: Results from our risk maps indicated areas of moderate-to-high risk along rivers in the Amazon basin, along the coasts of the Guianas, the Pacific coast of Colombia and northern Colombia, in parts of Peru and Bolivia and within the Brazilian Amazon. When validated with occurrence records for malaria, An. darlingi, An. albimanus and An. nuneztovari s.l., t-test results indicated that risk scores at occurrence locations were significantly higher (p < 0.0001) than a control group of geographically random points. CONCLUSION: In this study, we produced risk maps based on expert opinion on the spatial representation of risk of potential vector exposure and malaria transmission. The findings provide information to the public health decision maker/policy makers to give additional attention to the spatial planning of effective vector control measures. Therefore, as the region tackles the challenge of malaria elimination, prioritizing areas for interventions by using spatially accurate, high-resolution (1 km or less) risk maps may guide targeted control and help reduce the disease burden in the region.


Assuntos
Técnicas de Apoio para a Decisão , Malária/epidemiologia , Medição de Risco/métodos , Animais , Anopheles , Humanos , Insetos Vetores , Malária/prevenção & controle , Fatores de Risco , América do Sul/epidemiologia
7.
Acta Trop ; 158: 197-200, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26970373

RESUMO

Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness.


Assuntos
Anopheles/parasitologia , Insetos Vetores/parasitologia , Malária/transmissão , Animais , Colômbia/epidemiologia , Humanos
8.
Malar J ; 14: 476, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620401

RESUMO

BACKGROUND: Malaria incidence has recently decreased globally and, as malaria elimination is envisioned as a possibility by the health authorities, guidance is needed to strengthen malaria control strategies. Larval source treatment, which could complement routine vector control strategies, requires knowledge regarding the Anopheles larval habitats. METHODS: A cross-sectional study was conducted in three of the most malaria-endemic regions in Colombia. A total of 1116 potential larval habitats in 70 villages were sampled in three states located in western Colombia: Cordoba, Valle del Cauca and Nariño. RESULTS: Overall, 17.5 % (195) of the potential larval habitats were found positive for different Anopheles species. A total of 1683 larvae were identified belonging to seven species: Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neomaculipalpus, Anopheles nuneztovari s.l., Anopheles pseudopunctipennis, and Anopheles triannulatus. The most widely distributed species was An. nuneztovari s.l., which was found mainly in human-made fishponds in Cordoba and temporary puddles in Valle del Cauca. Anopheles albimanus and An. calderoni were associated with human-made wells or excavation sites in Nariño. Cordoba displayed the greatest Anopheles species diversity with a total of six species (Shannon diversity index H': 1.063). Although Valle del Cauca had four species, one more than Nariño, the diversity was lower because only one species predominated, An. nuneztovari s.l. The larval habitats with the highest Shannon diversity index were lagoons (H': 1.079) and fishponds (H': 1.009) in Cordoba, excavation sites in Nariño (H': 0.620) and puddles in Valle del Cauca (H': 0.764). CONCLUSIONS: This study provides important information regarding the larval habitats of the main malaria vectors in the most malaria-endemic regions of Colombia, which will be useful in guiding larval control operations.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecossistema , Insetos Vetores/crescimento & desenvolvimento , Malária/transmissão , Animais , Comportamento Animal , Colômbia/epidemiologia , Estudos Transversais , Doenças Endêmicas , Humanos , Larva/crescimento & desenvolvimento , Malária/epidemiologia
9.
Malar J ; 14: 519, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26694047

RESUMO

With malaria control in Latin America firmly established in most countries and a growing number of these countries in the pre-elimination phase, malaria elimination appears feasible. A review of the literature indicates that malaria elimination in this region will be difficult without locally tailored strategies for vector control, which depend on more research on vector ecology, genetics and behavioural responses to environmental changes, such as those caused by land cover alterations, and human population movements. An essential way to bridge the knowledge gap and improve vector control is through risk mapping. Malaria risk maps based on statistical and knowledge-based modelling can elucidate the links between environmental factors and malaria vectors, explain interactions between environmental changes and vector dynamics, and provide a heuristic to demonstrate how the environment shapes malaria transmission. To increase the utility of risk mapping in guiding vector control activities, definitions of malaria risk for mapping purposes must be standardized. The maps must also possess appropriate scale and resolution in order to become essential tools in integrated vector management (IVM), so that planners can target areas in greatest need of control measures. Fully integrating risk mapping into vector control programmes will make interventions more evidence-based, making malaria elimination more attainable.


Assuntos
Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/organização & administração , Topografia Médica , Humanos , América Latina/epidemiologia , Medição de Risco
10.
Am J Trop Med Hyg ; 93(3 Suppl): 69-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259947

RESUMO

Scale-up of the main vector control interventions, residual insecticides sprayed on walls or structures and/or impregnated in bed nets, together with prompt diagnosis and effective treatment, have led to a global reduction in malaria transmission. However, resistance in vectors to almost all classes of insecticides, particularly to the synthetic pyrethroids, is posing a challenge to the recent trend of declining malaria. Ten International Centers of Excellence for Malaria Research (ICEMR) located in the most malaria-endemic regions of the world are currently addressing insecticide resistance in the main vector populations, which not only threaten hope for elimination in malaria-endemic countries but also may lead to reversal where notable reductions in malaria have been documented. This communication illustrates the current status of insecticide resistance with a focus on the countries where activities are ongoing for 9 out of the 10 ICEMRs. Most of the primary malaria vectors in the ICEMR countries exhibit insecticide resistance, albeit of varying magnitude, and spanning all mechanisms of resistance. New alternatives to the insecticides currently available are still to be fully developed for deployment. Integrated vector management principles need to be better understood and encouraged, and viable insecticide resistance management strategies need to be developed and implemented.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos , África Subsaariana/epidemiologia , Animais , Sudeste Asiático/epidemiologia , Humanos , Cooperação Internacional , América Latina/epidemiologia
11.
Parasit Vectors ; 8: 431, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289677

RESUMO

BACKGROUND: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. METHODS: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. RESULTS: Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. CONCLUSION: As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.


Assuntos
Agricultura , Mudança Climática , Insetos Vetores/fisiologia , Malária/epidemiologia , Malária/transmissão , Crescimento Demográfico , Distribuição Animal , Animais , Humanos , América do Sul/epidemiologia
12.
Biomedica ; 35(1): 43-52, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-26148033

RESUMO

INTRODUCTION: Continuous use of insecticides for the control of dengue transmission may lead to decreased susceptibility levels in mosquito vector populations. Timely monitoring is necessary to ensure detection of any potential resistance problems. OBJECTIVE: To determine the susceptibility status of Aedes aegypti to insecticides used in public health in Caldas, Colombia, during 2007 and 2011. MATERIALS AND METHODS: Susceptibility tests to the organophosphates temephos, malathion, fenitrothion and pirimiphos methyl, as well as to the pyrethroid deltamethrin, were carried out using standard World Health Organization and Centers for Disease Control and Prevention protocols. RESULTS: In 2007, resistance to temephos was detected in Ae. aegypti populations from La Dorada with resistance ratios of 11.5 and 13.3, prompting the Caldas Health Department to suspend the use of this larvicide. A reduction in resistance ratios to temephos was observed in 2011, as well as an apparent resistance to pirimiphos methyl. All Ae. aegypti populations tested were susceptible to deltamethrin, malathion and fenitrothion in both years. CONCLUSION: Evaluating the resistance ratios during two distinct periods allowed a decrease in resistance to be detected after suspension of the use of temephos. Surveillance of mosquito populations for changes in susceptibility levels to the insecticides used in dengue control programs is therefore recommended.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Colômbia , Resistência a Medicamentos , Fatores de Tempo
13.
Malar J ; 14: 256, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26104785

RESUMO

BACKGROUND: Anopheles calderoni was first recognized in Colombia in 2010 as this species had been misidentified as Anopheles punctimacula due to morphological similarities. An. calderoni is considered a malaria vector in Peru and has been found naturally infected with Plasmodium falciparum in Colombia. However, its biting behaviour, population dynamics and epidemiological importance have not been well described for Colombia. METHODS: To assess the contribution of An. calderoni to malaria transmission and its human biting behaviour and spatial/temporal distribution in the southwest of Colombia, human landing catches (HLC) and larval collections were carried out in a cross-sectional, entomological study in 22 localities between 2011 and 2012, and a longitudinal study was performed in the Boca de Prieta locality in Olaya Herrera municipality between July 2012 and June 2013. All mosquitoes determined as An. calderoni were tested by ELISA to establish infection with Plasmodium spp. RESULTS: Larvae of An. calderoni were found in four localities in 12 out of 244 breeding sites inspected. An. calderoni adults were collected in 14 out of 22 localities during the cross-sectional study and represented 41.3% (459 of 1,111) of the collected adult specimens. Other species found were Anopheles albimanus (54.7%), Anopheles apicimacula (2.1%), Anopheles neivai (1.7%), and Anopheles argyritarsis (0.2%). In the localities that reported the highest malaria Annual Parasite Index (>10/1,000 inhabitants) during the year of sampling, An. calderoni was the predominant species (>90% of the specimens collected). In the longitudinal study, 1,528 An. calderoni were collected by HLC with highest biting rates in February, May and June 2013, periods of high precipitation. In general, the species showed a preference to bite outdoors (p < 0.001). In Boca de Prieta, two specimens of An. calderoni were ELISA positive for Plasmodium circumsporozoite protein: one for P. falciparum and one for Plasmodium vivax VK-210. This represents an overall sporozoite rate of 0.1% and an annual entomological inoculation rate of 2.84 infective bites/human/year. CONCLUSIONS: This study shows that An. calderoni is a primary malaria vector in the southwest of Colombia. Its observed preference for outdoor biting is a major challenge for malaria control.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Malária/epidemiologia , Distribuição Animal , Animais , Colômbia/epidemiologia , Estudos Transversais , Comportamento Alimentar , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/etiologia , Estudos Longitudinais , Malária/parasitologia , Plasmodium , Estações do Ano , Especificidade da Espécie
14.
PLoS Negl Trop Dis ; 9(5): e0003700, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25973753

RESUMO

Malaria remains endemic in 21 countries of the American continent with an estimated 427,000 cases per year. Approximately 10% of these occur in the Mesoamerican and Caribbean regions. During the last decade, malaria transmission in Mesoamerica showed a decrease of ~85%; whereas, in the Caribbean region, Hispaniola (comprising the Dominican Republic [DR] and Haiti) presented an overall rise in malaria transmission, primarily due to a steady increase in Haiti, while DR experienced a significant transmission decrease in this period. The significant malaria reduction observed recently in the region prompted the launch of an initiative for Malaria Elimination in Mesoamerica and Hispaniola (EMMIE) with the active involvement of the National Malaria Control Programs (NMCPs) of nine countries, the Regional Coordination Mechanism (RCM) for Mesoamerica, and the Council of Health Ministries of Central America and Dominican Republic (COMISCA). The EMMIE initiative is supported by the Global Fund for Aids, Tuberculosis and Malaria (GFATM) with active participation of multiple partners including Ministries of Health, bilateral and multilateral agencies, as well as research centers. EMMIE's main goal is to achieve elimination of malaria transmission in the region by 2020. Here we discuss the prospects, challenges, and research needs associated with this initiative that, if successful, could represent a paradigm for other malaria-affected regions.


Assuntos
Malária/prevenção & controle , Região do Caribe/epidemiologia , América Central/epidemiologia , Administração Financeira , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Controle de Mosquitos , América do Sul/epidemiologia
15.
Biomédica (Bogotá) ; 35(1): 43-52, ene.-mar. 2015. mapas, tab
Artigo em Espanhol | LILACS | ID: lil-745649

RESUMO

Introducción. El uso continuo de insecticidas para el control de la transmisión del dengue puede generar una reducción en los niveles de sensibilidad de las poblaciones de los mosquitos vectores. La vigilancia oportuna es necesaria para detectar cualquier problema potencial de resistencia. Objetivo. Determinar el estado de la sensibilidad a insecticidas de uso en salud pública en poblaciones de Aedes aegypti del departamento de Caldas, Colombia, en el 2007 y el 2011. Materiales y métodos. Se realizaron pruebas de sensibilidad a los organofosforados temefós, malatión, fenitrotión y metil-pirimifós y al piretroide deltametrina, siguiendo las metodologías estandarizadas de la Organización Mundial de la Salud y de los Centers for Disease Control and Prevention de los Estados Unidos. Resultados. En el 2007 se encontró resistencia al temefós en dos barrios del municipio de La Dorada, con grados de resistencia de 11,5 y 13,3. Por ello, la Dirección Territorial de Salud de Caldas suspendió el uso de este larvicida en dichos barrios. Cuatro años después, en el 2011, se observó una reducción en los grados de resistencia al temefós, así como resistencia al metil-pirimifós. Todas las poblaciones evaluadas fueron sensibles a los insecticidas deltametrina, malatión y fenitrotión en los dos períodos. Conclusión. La cuantificación de los grados de resistencia en dos períodos permitió evidenciar la reducción de la resistencia al temefós después de suspender su uso. Se recomienda mantener la vigilancia de los niveles de sensibilidad de los insecticidas usados en los programas de control de dengue.


Introduction: Continuous use of insecticides for the control of dengue transmission may lead to decreased susceptibility levels in mosquito vector populations. Timely monitoring is necessary to ensure detection of any potential resistance problems. Objective: To determine the susceptibility status of Aedes aegypti to insecticides used in public health in Caldas, Colombia, during 2007 and 2011. Materials and methods: Susceptibility tests to the organophosphates temephos, malathion, fenitrothion and pirimiphos methyl, as well as to the pyrethroid deltamethrin, were carried out using standard World Health Organization and Centers for Disease Control and Prevention protocols. Results: In 2007, resistance to temephos was detected in Ae. aegypti populations from La Dorada with resistance ratios of 11.5 and 13.3, prompting the Caldas Health Department to suspend the use of this larvicide. A reduction in resistance ratios to temephos was observed in 2011, as well as an apparent resistance to pirimiphos methyl. All Ae. aegypti populations tested were susceptible to deltamethrin, malathion and fenitrothion in both years. Conclusion: Evaluating the resistance ratios during two distinct periods allowed a decrease in resistance to be detected after suspension of the use of temephos. Surveillance of mosquito populations for changes in susceptibility levels to the insecticides used in dengue control programs is therefore recommended.


Assuntos
Animais , Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Colômbia , Resistência a Medicamentos , Fatores de Tempo
16.
Mem Inst Oswaldo Cruz ; 109(7): 952­956, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411002

RESUMO

Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.


Assuntos
Anopheles/classificação , Insetos Vetores/classificação , Malária/transmissão , Plasmodium , Animais , Anopheles/anatomia & histologia , Biomarcadores , Cidades , Colômbia , DNA Intergênico , Ensaio de Imunoadsorção Enzimática , Feminino , Geografia , Humanos , Malária/parasitologia , Especificidade da Espécie
17.
Mem. Inst. Oswaldo Cruz ; 109(7): 952-956, 11/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-728802

RESUMO

Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.


Assuntos
Humanos , Animais , Feminino , Anopheles/classificação , Insetos Vetores/classificação , Malária/transmissão , Plasmodium , Anopheles/anatomia & histologia , Biomarcadores , Cidades , Colômbia , DNA Intergênico , Ensaio de Imunoadsorção Enzimática , Geografia , Malária/parasitologia , Especificidade da Espécie
18.
Mem Inst Oswaldo Cruz ; 109(4): 473-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25075785

RESUMO

Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.


Assuntos
Anopheles/anatomia & histologia , Anopheles/genética , Genitália Masculina/anatomia & histologia , Animais , Anopheles/classificação , Sequência de Bases , Colômbia , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Feminino , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Masculino , Dados de Sequência Molecular , Filogenia
19.
Mem. Inst. Oswaldo Cruz ; 109(4): 473-479, 03/07/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-716299

RESUMO

Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.


Assuntos
Animais , Feminino , Masculino , Anopheles/anatomia & histologia , Anopheles/genética , Genitália Masculina/anatomia & histologia , Anopheles/classificação , Sequência de Bases , Colômbia , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Dados de Sequência Molecular , Filogenia
20.
Am J Trop Med Hyg ; 91(1): 27-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24891460

RESUMO

As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system.


Assuntos
Anopheles/parasitologia , Monitoramento Epidemiológico , Insetos Vetores/parasitologia , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Modelos Estatísticos , Animais , Clima , Colômbia , Controle de Doenças Transmissíveis , Feminino , Humanos , Dinâmica Populacional , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...