Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(43): 29819-29829, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829715

RESUMO

Developing borophene films with good structural stability on non-metallic substrates to maximize their potential in photosensitivity, gas detection, photothermia, energy storage, and deformation detection, among others has been challenging in recent years. Herein, we succeeded in the pulsed laser deposition of multilayered borophene films on Si (100) with ß12 or χ3 bonding by tuning the mean kinetic energy in the plasma during the deposition process. Raman and X-ray photoelectron spectroscopies confirm ß12 and χ3 bonding in the films. Borophene films with ß12 bonding were obtained by tuning a high mean kinetic energy in the plasma, while borophene with χ3 bonding required a relatively low mean kinetic energy. Atomic force microscopy (AFM) micrographs revealed a granular and directional growth of the multilayered borophene films following the linear atomic terraces from the (100) silicon substrate. AFM nanofriction was used to access the borophene surfaces and to reveal the pull-off force and friction coefficient of the films where the surface oxide showed a significant contribution. To summarize, we show that it is possible to deposit multilayered borophene thin films with different bondings by tuning the mean kinetic energy during pulsed laser deposition. The characterization of the plasma during borophene deposition accompanies our findings, providing support for the changes in kinetic energy.

2.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984996

RESUMO

Bismuth telluride thin films were grown by pulsed laser deposition by implementing a novel method that combines both Te and Bi plasmas resulting from the laser ablation of individual Bi and Te targets. Furthermore, the mean kinetic ion energy and density of the plasmas, as estimated by TOF curves obtained from Langmuir probe measurements, were used as control parameters for the deposition process. The obtained thin films exhibit a metallic mirror-like appearance and present good adhesion to the substrate. Morphology of the thin films was observed by SEM, yielding smooth surfaces where particulates were also observed (splashing). Chemical composition analysis obtained by EDS showed that apparently the films have a Te-rich composition (ratio of Te/Bi of 3); however, Te excess arises from the splashing as revealed by the structural characterization (XRD and Raman spectroscopy). The XRD pattern indicated that depositions have the rhombohedral (D3d5 (R3¯m)) structure of Bi2Te3. Likewise, Raman spectra exhibited the presence of signals that correspond to Eg2, A1u2 and A1g2(LO) vibrational modes of the same rhombohedral phase of Bi2Te3. Additionally, oxidation states, analyzed by XPS, resulted in signals associated to Bi3+ and Te2- that correspond to the Bi2Te3 compound. Finally, surface topology and thickness profiles were obtained from AFM measurements, confirming a combination of a smooth surface with particulates on top of it and a film thickness of 400 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...