Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 121: 339-348, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271355

RESUMO

Silicones (i.e. crosslinked poly(dimethylsiloxane), PDMS) are commonly used material for microfluidic device fabrication. Nonetheless, due to the uncontrollable absorption of small hydrophobic molecules (<1 kDa) into the bulk, its applicability to cell-based drug assays and sensing applications has been limited. Here, we demonstrate the use of substrates made of silicones bulk modified with a poly(ethylene oxide) silane amphiphile (PEO-SA) to reduce hydrophobic small molecule sequestration for cell-based assays. Modified silicone substrates were generated with concentrations of 2 wt.%, 9 wt.% and, 14 wt.% PEO-SA. Incorporation of PEO-SA into the silicone bulk was assessed by FTIR analysis in addition to water contact angle analysis to evaluate surface hydrophobicity. Cell toxicity, absorption of small hydrophobic drugs, and cell response to hydrophobic molecules were also evaluated. Results showed that the incorporation of the PEO-SA into the silicone led to a reduction in water contact angle from 114° to as low as 16° that was stable for at least three months. The modified silicones showed viability values above 85% for NIH-3T3, MCF7, MDA-MB-468, and MDA-MB-231 cell lines. A drug response assay using tamoxifen and the MCF7 cell line showed full recovery of cell toxicity response when exposed to PDMS modified with 9 wt.% or 14 wt.% PEO-SA compared to tissue culture plastic. Therefore, our study supports the use of PEO-SA at concentrations of 9 wt.% or higher for enhanced surface wettability and reduced absorption of small hydrophobic molecules in PDMS-based platforms.


Assuntos
Dimetilpolisiloxanos , Silicones , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Água , Molhabilidade
2.
J Control Release ; 329: 353-360, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301836

RESUMO

Cancer vaccines hold great promise to produce antigen-specific T cell immunity for personalized therapy of cancer. Previously, we reported an ultra-pH-sensitive nanoparticle, PC7A, capable of priming an efficacious immune response without significant systemic toxicity. Despite the early success, the relationship between antigen properties and encapsulation efficiency for downstream immune activation remains poorly understood. In this study, we investigated a small library of melanoma antigens and the effects of several formulation methods on the efficiency of peptide loading inside PC7A nanoparticles. Results show loading efficiency is not highly dependent on the formulation methods, but instead mainly driven by the peptide antigen properties. In particular, we identified a phase transition event, namely the folding of antigenic peptides from random coils to α-helical structure, is important for antigen loading inside PC7A nanoparticles. Mutation of a peptide that abrogates the formation of helical structure resulted in poor loading efficiency. Antitumor efficacy studies in melanoma-bearing mice demonstrate the importance of peptide loading in vaccine-induced antitumor immunity. This study highlights the contribution of phase transition of peptide antigens on vaccine formulation in order to make widespread use of personalized nanoparticle vaccines feasible.


Assuntos
Vacinas Anticâncer , Nanopartículas , Animais , Antígenos , Células Dendríticas , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA