Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(10): 1948-1960, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895847

RESUMO

The assessment of behavioural disturbance in cetacean species (e.g. resulting from exposure to anthropogenic sources such as military sonar, seismic surveys, or pile driving) is important for effective conservation and management. Disturbance effects can be informed by Behavioural Response Studies (BRSs), involving either controlled exposure experiments (CEEs) where noise exposure conditions are presented deliberately to meet experimental objectives or in opportunistic contexts where ongoing activities are monitored in a strategic manner. In either context, animal-borne sensors or in situ observations can provide information on individual exposure and disturbance responses. The past 15 years of research have greatly expanded our understanding of behavioural responses to noise, including hundreds of experiments in nearly a dozen cetacean species. Many papers note limited sample sizes, required knowledge of baseline behaviour prior to exposure and the importance of contextual factors modulating behavioural responses, all of which in combination can lead to sampling biases, even for well-designed research programs. It is critical to understand these biases to robustly identify responses. This ensures outcomes of BRSs help inform predictions of how anthropogenic disturbance impacts individuals and populations. Our approach leverages concepts from the animal behaviour literature focused on helping to avoid sampling bias by considering what shapes an animal's response. These factors include social, experience, genetic and natural changes in responsiveness. We developed and applied a modified version of this framework to synthesise current knowledge on cetacean response in the context of effects observed across marine and terrestrial taxa. This new 'Sampling, Exposure, Receptor' framework (SERF) identifies 43 modulating factors, highlights potential biases, and assesses how these vary across selected focal species. In contrast to studies that identified variation in 'Exposure' factors as a key concern, our analysis indicated that factors relating to 'Sampling' (e.g. deploying tags on less evasive individuals, which biases selection of subjects), and 'Receptor' (e.g. health status or coping style) have the greatest potential for weakening the desired broad representativeness of BRSs. Our assessment also highlights how potential biases could be addressed with existing datasets or future developments.


Assuntos
Comportamento Animal , Ruído , Animais , Comportamento Animal/fisiologia
2.
J Exp Biol ; 223(Pt 18)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967976

RESUMO

We analysed 3680 dives from 23 satellite-linked tags deployed on Cuvier's beaked whales to assess the relationship between long duration dives and inter-deep dive intervals and to estimate aerobic dive limit (ADL). The median duration of presumed foraging dives was 59 min and 5% of dives exceeded 77.7 min. We found no relationship between the longest 5% of dive durations and the following inter-deep dive interval nor any relationship with the ventilation period immediately prior to or following a long dive. We suggest that Cuvier's beaked whales have low metabolic rates, high oxygen storage capacities and a high acid-buffering capacity to deal with the by-products of both aerobic and anaerobic metabolism, which enables them to extend dive durations and exploit their bathypelagic foraging habitats.


Assuntos
Mergulho , Ecolocação , Animais , Ecossistema , Fatores de Tempo , Baleias
3.
R Soc Open Sci ; 6(2): 181728, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30891284

RESUMO

Cuvier's beaked whales exhibit exceptionally long and deep foraging dives. The species is little studied due to their deep-water, offshore distribution and limited time spent at the surface. We used LIMPET satellite tags to study the diving behaviour of Cuvier's beaked whales off Cape Hatteras, North Carolina from 2014 to 2016. We deployed 11 tags, recording 3242 h of behaviour data, encompassing 5926 dives. Dive types were highly bimodal; deep dives (greater than 800 m, n = 1408) had a median depth of 1456 m and median duration of 58.9 min; shallow dives (50-800 m, n = 4518) were to median depths of 280 m with a median duration of 18.7 min. Most surface intervals were very short (median 2.2 min), but all animals occasionally performed extended surface intervals. We found no diel differences in dive depth or the percentage of time spent deep diving, but whales spent significantly more time near the surface at night. Other populations of this species exhibit similar dive patterns, but with regional differences in depth, duration and inter-dive intervals. Satellite-linked tags allow for the collection of long periods of dive records, including the occurrence of anomalous behaviours, bringing new insights into the lives of these deep divers.

4.
Ecol Evol ; 9(1): 533-544, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680134

RESUMO

Understanding the drivers underlying fluctuations in the size of animal populations is central to ecology, conservation biology, and wildlife management. Reliable estimates of survival probabilities are key to population viability assessments, and patterns of variation in survival can help inferring the causal factors behind detected changes in population size. We investigated whether variation in age- and sex-specific survival probabilities could help explain the increasing trend in population size detected in a small, discrete population of bottlenose dolphins Tursiops truncatus off the east coast of Scotland. To estimate annual survival probabilities, we applied capture-recapture models to photoidentification data collected from 1989 to 2015. We used robust design models accounting for temporary emigration to estimate juvenile and adult survival, multistate models to estimate sex-specific survival, and age models to estimate calf survival. We found strong support for an increase in juvenile/adult annual survival from 93.1% to 96.0% over the study period, most likely caused by a change in juvenile survival. Examination of sex-specific variation showed weaker support for this trend being a result of increasing female survival, which was overall higher than for males and animals of unknown sex. Calf survival was lower in the first than second year; a bias in estimating third-year survival will likely exist in similar studies. There was some support first-born calf survival being lower than for calves born subsequently. Coastal marine mammal populations are subject to the impacts of environmental change, increasing anthropogenic disturbance and the effects of management measures. Survival estimates are essential to improve our understanding of population dynamics and help predict how future pressures may impact populations, but obtaining robust information on the life history of long-lived species is challenging. Our study illustrates how knowledge of survival can be increased by applying a robust analytical framework to photoidentification data.

5.
J Exp Biol ; 221(Pt 11)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895580

RESUMO

The risk of predation is often invoked as an important factor influencing the evolution of social organization in cetaceans, but little direct information is available about how these aquatic mammals respond to predators or other perceived threats. We used controlled playback experiments to examine the behavioral responses of short-finned pilot whales (Globicephala macrorhynchus) off Cape Hatteras, NC, USA, and Risso's dolphins (Grampus griseus) off the coast of Southern California, USA, to the calls of a potential predator, mammal-eating killer whales. We transmitted calls of mammal-eating killer whales, conspecifics and baleen whales to 10 pilot whales and four Risso's dolphins equipped with multi-sensor archival acoustic recording tags (DTAGs). Only playbacks of killer whale calls resulted in significant changes in tagged animal heading. The strong responses observed in both species occurred only following exposure to a subset of killer whale calls, all of which contained multiple non-linear properties. This finding suggests that these structural features of killer whale calls convey information about predatory risk to pilot whales and Risso's dolphins. The observed responses differed between the two species; pilot whales approached the sound source while Risso's dolphins fled following playbacks. These divergent responses likely reflect differences in anti-predator response mediated by the social structure of the two species.


Assuntos
Golfinhos/psicologia , Vocalização Animal , Animais , Oceano Atlântico , North Carolina , Comportamento Social , Especificidade da Espécie , Orca/psicologia , Baleias Piloto/psicologia
6.
Sci Rep ; 7: 45765, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361954

RESUMO

Diving behaviour of short-finned pilot whales is often described by two states; deep foraging and shallow, non-foraging dives. However, this simple classification system ignores much of the variation that occurs during subsurface periods. We used multi-state hidden Markov models (HMM) to characterize states of diving behaviour and the transitions between states in short-finned pilot whales. We used three parameters (number of buzzes, maximum dive depth and duration) measured in 259 dives by digital acoustic recording tags (DTAGs) deployed on 20 individual whales off Cape Hatteras, North Carolina, USA. The HMM identified a four-state model as the best descriptor of diving behaviour. The state-dependent distributions for the diving parameters showed variation between states, indicative of different diving behaviours. Transition probabilities were considerably higher for state persistence than state switching, indicating that dive types occurred in bouts. Our results indicate that subsurface behaviour in short-finned pilot whales is more complex than a simple dichotomy of deep and shallow diving states, and labelling all subsurface behaviour as deep dives or shallow dives discounts a significant amount of important variation. We discuss potential drivers of these patterns, including variation in foraging success, prey availability and selection, bathymetry, physiological constraints and socially mediated behaviour.


Assuntos
Mergulho , Baleias Piloto , Animais , Comportamento Animal , Feminino , Masculino , Cadeias de Markov
7.
PLoS One ; 7(9): e44075, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984461

RESUMO

Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975-2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world's ocean surface was surveyed and only 6% had been covered frequently enough (≥ 5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km(2)) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species' predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species' ranges had been covered frequently enough for trend analysis. Sperm whales emerged from our analyses as a relatively data-rich species. This is a notoriously difficult species to survey visually, and we use this as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. We propose field and analytical methods to fill in data gaps to improve cetacean conservation efforts.


Assuntos
Cetáceos/fisiologia , Coleta de Dados , Internacionalidade , Estatística como Assunto , Animais , Cetáceos/classificação , Ecossistema , Estações do Ano , Especificidade da Espécie , Cachalote/fisiologia , Fatores de Tempo
8.
PLoS One ; 7(8): e42535, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880022

RESUMO

Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville's beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement.


Assuntos
Acústica , Comportamento Animal/fisiologia , Ruído , Baleias/fisiologia , Animais , Comportamento Alimentar/fisiologia , Modelos Biológicos , Software
9.
Proc Biol Sci ; 279(1738): 2539-45, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22378804

RESUMO

The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.


Assuntos
Comunicação Animal , Golfinho Nariz-de-Garrafa/fisiologia , Vocalização Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Ecolocação , Reconhecimento Fisiológico de Modelo , Espectrografia do Som
10.
J Comp Psychol ; 122(3): 305-11, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18729659

RESUMO

In large social groups acoustic communication signals are prone to signal masking by conspecific sounds. Bottlenose dolphins (Tursiops truncatus) use highly distinctive signature whistles that counter masking effects. However, they can be found in very large groups where masking by conspecific sounds may become unavoidable. In this study we used passive acoustic localization to investigate how whistle rates of wild bottlenose dolphins change in relation to group size and behavioral context. We found that individual whistle rates decreased when group sizes got larger. Dolphins displayed higher whistle rates in contexts when group members were more dispersed as in socializing and in nonpolarized movement than during coordinated surface travel. Using acoustic localization showed that many whistles were produced by groups nearby and not by our focal group. Thus, previous studies based on single hydrophone recordings may have been overestimating whistle rates. Our results show that although bottlenose dolphins whistle more in social situations they also decrease vocal output in large groups where the potential for signal masking by other dolphin whistles increases.


Assuntos
Vocalização Animal , Animais , Comportamento Animal , Golfinho Nariz-de-Garrafa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...