Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Mater Chem B ; 4(6): 1142-1149, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263007

RESUMO

Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres showed no reduction in cell viability. To further assess toxicity, cells were exposed to media that had been used to extract any aqueous-soluble leachates from developed fibre. Overall, these composite fibres show promising mechanical and electrical properties while not significantly impeding cell growth, opening up a wide range of potential applications including nerve and muscle regeneration studies.

3.
J Neural Eng ; 10(1): 016008, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23283383

RESUMO

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.


Assuntos
Regeneração Nervosa/fisiologia , Próteses Neurais , Doenças do Sistema Nervoso Periférico/cirurgia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Movimento Celular/fisiologia , Ácido Láctico , Masculino , Células PC12 , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia
4.
Neuromuscul Disord ; 12 Suppl 1: S61-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12206798

RESUMO

Targeted correction of mutations in muscle can be delivered by direct i.m. injection of corrective DNA to the dystrophic muscle or by autologous injection of cells that have been genetically corrected after isolation from the individual with the dystrophic muscle. The successful application of chimeraplasty and short fragment homologous replacement to correct the exon 23 nonsense mdx transition at the mouse dys locus has opened up the possibility that with further development, targeted gene correction may have some future application for the treatment of muscular dystrophies. In vitro, application of targeted gene correction at the mdx dys locus results in better correction efficiencies than when applied directly to dystrophic muscle. This suggests that at least for the time being, a strategy involving ex vivo correction may be advantageous over a direct approach for delivery of gene correction to dystrophic muscle. This, particularly in view of recent developments indicating that bone-marrow-derived cells are able to systemically remodel dystrophic muscle, whilst penetration of DNA introduced to muscle is limited to individually injected muscles. Application of targeted gene correction to Duchenne dystrophy needs to account for the fact that about 65% of Duchenne muscular dystrophy cases involve large frame-shift deletion of gene sequence at the dys locus. Traditionally, whilst targeted gene correction is able to restore point mutations entirely, it remains to be seen as to whether a strategy for the 'correction' of frame shift deletions may be engineered successfully. This communication discusses the possibility of applying targeted gene correction to dystrophic muscle in Duchenne dystrophy.


Assuntos
Células da Medula Óssea , Distrofina/genética , Terapia Genética/métodos , Antígenos Comuns de Leucócito/metabolismo , Distrofias Musculares/terapia , Animais , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Transplante de Células , Mutação da Fase de Leitura , Marcação de Genes , Técnicas de Transferência de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofias Musculares/genética , Distrofias Musculares/imunologia , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia
5.
Gene Ther ; 9(11): 695-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12032690

RESUMO

In muscle, mutant genes can be targeted and corrected directly by intramuscular (i.m.) injection of corrective DNA, or by ex vivo delivery of DNA to myogenic cells, followed by cell transplantation. Short fragment homologous replacement (SFHR) has been used to repair the exon 23 nonsense transition at the Xp21.1 dys locus in cultured cells and also, directly in tibialis anterior from male mdx mice. Whilst mdx dys locus correction can be achieved in up to 20% of cells in culture, much lower efficiency is evident by i.m. injection. The major consideration for application of targeted gene correction to muscle is delivery throughout relevant tissues. Systemically injected bone marrow (BM)-derived cells from wt C57BL/10 ScSn mice are known to remodel mdx muscle when injected into the systemic route. Provided that non muscle-derived cell types most capable of muscle remodeling activity can be more specifically identified, isolated and expanded, cell therapy seems presently the most favorable vehicle by which to deliver gene correction throughout muscle tissues. Using wt bone marrow as a model, this study investigates systemic application of bone marrow-derived cells as potential vehicles to deliver corrected (ie wt) dys locus to dystrophic muscle. Intravenous (i.v.) and intraperitoneal (i.p.) injections of wt BM were given to lethally and sub-lethally irradiated mdx mice. Despite both i.v. and surviving i.p. groups containing wt dys loci in 100% and less than 1% of peripheral blood nuclei, respectively, both groups displayed equivalent levels of wt dys transcript in muscle RNA. These results suggest that the muscle remodeling activity observed in systemically injected BM cells is not likely to be found in the hemopoietic fraction.


Assuntos
Transplante de Medula Óssea , Distrofina/genética , Marcação de Genes/métodos , Terapia Genética/métodos , Distrofias Musculares/terapia , Animais , Células da Medula Óssea/metabolismo , DNA/administração & dosagem , Injeções Intraperitoneais , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Transplante Autólogo
6.
J Card Fail ; 6(1): 47-55, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10746819

RESUMO

BACKGROUND: Cardiomyopathy is well recognized in mitochondrial diseases in which it has been associated with defects of mitochondrial function, including cytochrome-c oxidase (COX) deficiencies. This study explores the respiratory chain activity, particularly of COX, in patients with cardiomyopathy to determine whether a relationship exists between respiratory enzyme activity and cardiac function. METHODS AND RESULTS: Myocardial specimens from the left ventricular wall of explanted hearts were obtained from subjects with ischemic (n = 6) or nonischemic dilated (n = 8) cardiomyopathy. Assays for citrate synthase (CS) and complexes II/III and IV activity were performed on cardiac mitochondria and homogenate. Enzyme activities were normalized to CS activity and compared with control activities (n = 10). A significant reduction in COX and/or CS activity was identified in mitochondrial preparations from the transplant group and correlated significantly with ejection fraction (P < .05), although this does not prove a causal relationship. Significantly reduced CS activity in homogenate was identified, suggesting decreased mitochondrial volume in addition to decreased COX activity. Measurements in cardiac homogenates failed to show a significant reduction in COX activity (P > .05) in the transplant group, suggesting that the use of prefrozen tissue homogenates may underestimate existing mitochondrial respiratory defects in cardiac tissue. CONCLUSIONS: Mitochondrial function is altered at a number of levels in end-stage cardiomyopathy. Defective COX activity resulting in deficient adenosine triphosphate generation may contribute to impaired ventricular function in heart failure. Agents capable of improving mitochondrial function may find an adjuvant role in the treatment of cardiac failure.


Assuntos
Cardiomiopatia Dilatada/enzimologia , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ventrículos do Coração/enzimologia , Mitocôndrias Cardíacas/enzimologia , Fosforilação Oxidativa , Adolescente , Adulto , Idoso , Biomarcadores , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/cirurgia , Transporte de Elétrons/fisiologia , Feminino , Transplante de Coração , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Volume Sistólico
7.
Nucleic Acids Res ; 26(19): 4365-73, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9742236

RESUMO

Progressive age-related oxidative phosphorylation (OxPhos) decline is well known in human tissues. Depletion of mitochondrial DNA (mtDNA) causes OxPhos defects in patients with myopathic syndromes and deficient mtDNA replication has been observed in cells cultured from patients with mitochondrial disease. Patients undergoing treatment for AIDS develop OxPhos defects via mtDNA depletion resulting from inhibition of mtDNA polymerase gamma (Polgamma) by 2'-deoxy 3'-azido thymidine. These findings by others give rise to a possible link between mtDNA replication and bioenergetic decline in disease and during ageing. We have designed an in vitro assay for Polgamma function in small tissue samples to explore this possible link. Platelet homogenate Polgamma showed an activity with a K m of 150 microM (dTTP), a V max of 11.8 pmol/min/mg, inhibited (41% inhibition; 50 microM) by ethidium bromide. Determination of several storage characteristics showed that platelets were a convenient source of Polgamma for assay. Polgamma activity in 45 subjects did not coincide with significant age-related decline (P<0.002; P) observed in cytochrome oxidase (CytOx) activity or with citrate synthase activity. Of the activities studied, the only significant age-wise variation was a 24% CytOx deficiency in elderly (>50; n = 19) compared to young (<51; n = 24) individuals (P<0.01; t). These results suggest a maintenance of total cellular mtDNA Polgamma processive levels during ageing, largely independent of total cellular bioenergetic status or mitochondrial number/density. The processive component of Polgamma is therefore unlikely to make a major contribution to age-related bioenergetic activity decline. This does not, however, preclude the possibility that transient periods of inhibition at crucial points of the cell cycle or development may augment existing intracellular deficiencies. The assay described here greatly facilitates study of Polgamma activity in patients with conditions involving mtDNA depletion or rearrangement.


Assuntos
Envelhecimento/genética , Replicação do DNA , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Adulto , DNA Polimerase gama , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA