Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594909

RESUMO

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.

2.
Am J Obstet Gynecol ; 228(4): 467.e1-467.e16, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36244408

RESUMO

BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality. Studies have shown that interleukin 1 plays a major role in the pathophysiology of preterm birth by inducing the production of proinflammatory mediators and uterine activation proteins leading to labor. More importantly, uteroplacental inflammation, associated with preterm birth parturition pathways, is detrimental to fetal tissues and leads to long-term sequelae. Our group has developed an allosteric antagonist of the interleukin 1 receptor, rytvela, found to be potent and safe in preventing preterm birth by suppressing inflammation via the inhibition of the mitogen-activated protein kinase pathway while preserving the Nuclear factor kappa B pathway (important in immune vigilance). Rytvela has been shown to inhibit inflammatory up-regulation and uterine activation while preserving fetal development. OBJECTIVE: This study aimed to further the preclinical development of rytvela by evaluating its optimal dose and minimal duration of treatment to inhibit the inflammatory cascade, prolong gestation, and promote neonatal outcomes. STUDY DESIGN: Pregnant CD-1 mice were administered with lipopolysaccharide (10 µg, intraperitoneal administration) or interleukin 1 (1 µg/kg, intrauterine administration) on gestational day 16 to induce preterm labor. Rytvela was administered at different doses (0.1, 0.5, 1.0, 2.0, 4.0 mg/kg/d subcutaneously) from gestational days 16 to 18.5. To evaluate the minimal duration of treatment, the mice were administered with rytvela (2 mg/kg/d subcutaneously) for 24, 36, or 48 hours. The rate of prematurity (gestational day <18.5) and neonate survival and weight were evaluated. Gestational tissues were collected at gestational day 17.5 to quantify cytokines, proinflammatory mediators, and uterine activating proteins by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The neonatal lungs and intestines were collected from postnatal days 5 to 7 and analyzed by histology. RESULTS: Rytvela exhibited a dose-response profile and achieved maximum efficacy at a dose of 2 mg/kg/d by reducing 70% of lipopolysaccharide-induced preterm births and 60% of interleukin 1ß-induced preterm births. In addition, rytvela attained maximum efficacy at a dose of 1 mg/kg/d by increasing neonate survival by up to 65% in both models of preterm birth. Rytvela protected fetuses from inflammatory insult as of 24 hours, preserving lung and intestinal integrity, and prevented preterm birth and fetal mortality by 60% and 50%, respectively, as of 36 hours of treatment. CONCLUSION: The maximum efficacy of rytvela was achieved at 2 mg/kg/d with improved birth outcomes and prevented inflammatory up-regulation upon 36 hours (only) of treatment. Rytvela exhibited desirable properties for the safe prevention of preterm birth and fetal protection.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Animais , Camundongos , Nascimento Prematuro/prevenção & controle , Lipopolissacarídeos/efeitos adversos , Feto , Inflamação , Anti-Inflamatórios , Interleucina-1
3.
Int J Dev Neurosci ; 82(3): 243-260, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315121

RESUMO

INTRODUCTION: Inflammation-induced white matter injury (WMI) in preterm infants is characterized by microglia activation, astrogliosis, oxidative stress and neurodevelopmental impairments. Microglia and astrocytes activation can be described under a broad spectrum of activation profile with extremes described as pro-inflammatory/neurotoxic (M1 microglia or A1 astrocyte) or anti-inflammatory/neuroprotective (M2 microglia or A2 astrocyte) in response to stimuli including lipopolysaccharide (LPS) and interleukin 1 (IL-1). As IL-1 signalling pathway has been posited as a major driver of inflammation-induced perinatal WMI, our aim was to evaluate the contribution of IL-1 modulation in LPS-induced microglia and astrocyte activation. METHODS: Primary neonatal cell co-cultures of astrocytes and microglia were treated with LPS (100 ng/ml) for 8 h or 24 h. Two distinct IL-1 receptor antagonists, Rytvela or Kineret (1 µg/ml), were added simultaneously with LPS to respectively modulate or block IL-1 receptor. Medium was collected to measure levels of IL-1ß. Expression of markers related to pro- and anti-inflammatory microglia and astrocyte activation profiles and antioxidant genes were assessed. RESULTS: At 8 h, LPS exposure induced pro- (M1/A1) and anti-inflammatory (M2/A2) marker expression and inhibited antioxidant gene expression in microglia and astrocytes. By 24 h, continuous LPS exposure increased pro-inflammatory and neurotoxic microglial and astrocytic markers (M1/A1), as well as antioxidant genes. Administration of IL-1 antagonists Rytvela and Kineret with continuous LPS exposure had no significant effect on modulation of specific microglia and astrocyte activation pathways. DISCUSSION/CONCLUSION: We show that LPS effects on in vitro neonatal microglia and astrocytes co-cultures are time dependent eliciting a number of pro- and anti-inflammatory responses during the acute phase of inflammation (8 h), which shift towards pro-inflammatory and neurotoxic factors by 24 h. Although LPS-induced inflammation led to abundant IL-1 expression, IL-1 inhibition had no significant impact on in vitro modulation of microglia and astrocyte activation pathways towards M2 and A2 activation profile.


Assuntos
Lipopolissacarídeos , Síndromes Neurotóxicas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , Gravidez , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/uso terapêutico
4.
Cytokine Growth Factor Rev ; 59: 118-130, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33551331

RESUMO

Preterm birth (PTB) and its consequences are a major public health concern as preterm delivery is the main cause of mortality and morbidity at birth. There are many causes of PTB, but inflammation is undeniably associated with the process of premature childbirth and fetal injury. At present, treatments clinically available mostly involve attempt to arrest contractions (tocolytics) but do not directly address upstream maternal inflammation on development of the fetus. One of the possible solutions may lie in the modulation of inflammatory mediators. Of the many pro-inflammatory cytokines involved in the induction of PTB, IL-6 stands out for its pleiotropic effects and its involvement in both acute and chronic inflammation. Here, we provide a detailed review of the effects of IL-6 on the timing of childbirth, its occurrence during PTB and its indissociable roles with associated fetal tissue damage.


Assuntos
Nascimento Prematuro , Citocinas , Parto Obstétrico , Feminino , Humanos , Recém-Nascido , Inflamação , Interleucina-6 , Gravidez
6.
Front Pharmacol ; 11: 296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226385

RESUMO

Retinopathy of prematurity (ROP) is the leading cause of blindness in neonates. Inflammation, in particular interleukin-1ß (IL-1ß), is increased in early stages of the disorder, and contributes to inner and outer retinal vasoobliteration in the oxygen-induced retinopathy (OIR) model of ROP. A small peptide antagonist of IL-1 receptor, composed of the amino acid sequence, rytvela, has been shown to exert beneficial anti-inflammatory effects without compromising immunovigilance-related NF-κB in reproductive tissues. We conducted a longitudinal study to determine the efficacy of "rytvela" in preserving the integrity of the retina in OIR model, using optical coherence tomography (OCT) which provides high-resolution cross-sectional imaging of ocular structures in vivo. Sprague-Dawley rats subjected to OIR and treated or not with "rytvela" were compared to IL-1 receptor antagonist (Kineret). OCT imaging and custom automated segmentation algorithm used to measure retinal thickness (RT) were obtained at P14 and P30; gold-standard immunohistochemistry (IHC) was used to confirm retinal anatomical changes. OCT revealed significant retinal thinning in untreated animals by P30, confirmed by IHC; these changes were coherently associated with increased apoptosis. Both rytvela and Kineret subsided apoptosis and preserved RT. As anticipated, Kineret diminished both SAPK/JNK and NF-κB axes, whereas rytvela selectively abated the former which resulted in preserved monocyte phagocytic function. Altogether, OCT imaging with automated segmentation is a reliable non-invasive approach to study longitudinally retinal pathology in small animal models of retinopathy.

7.
Front Chem ; 8: 610431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415098

RESUMO

As a key cytokine mediator of inflammation, interleukin-1ß (IL-1ß) binds to the IL-1 receptor (IL-1R) and activates various downstream signaling mediators, including NF-κB, which is required for immune vigilance and cellular protection. Toward the development of IL-1-targeting therapeutics which exhibit functional selectivity, the all-D-amino acid peptide 1 (101.10, H-D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala-NH2) was conceived as an allosteric IL-1R modulator that conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Employing ß-hydroxy-α-amino-γ-lactam (Hgl) stereoisomers to study the conformation about the Thr3 residue in 1, [(3R,4S)-Hgl3]-1 (2b), among all possible diastereomers, was found to exhibit identical in vitro and in vivo activity as the parent peptide and superior activity to the α-amino-γ-lactam (Agl) counterpart. Noting the relevance of the ß-hydroxyl substituent and configuration for the activity of (3R,4S)-2b, fifteen different ß-substituted-Agl3 analogs of 1 (e.g., 2c-q) have now been synthesized by a combination of solution- and solid-phase methods employing N-Fmoc-ß-substituted-Agl3-Val-OH dipeptide building blocks. Introduction of a ß-azido-Agl3 residue into the resin bound peptide and subsequent reduction and CuAAC chemistry gave access to a series of amine and triazole derivatives (e.g., 2h-q). ß-Substituted-[Agl3]-1 analogs 2c-q exhibited generally similar circular dichroism (CD) spectra as that of Hgl analog 2b in water, presenting curve shapes indicative of ß-turn structures. The relevance of the ß-substituent was indicated in rodent models of preterm labor and retinopathy of prematurity (ROP), in which certain analogs inhibited preterm birth and vaso-obliteration, respectively, with activity similar to 1 and 2b. The ß-substituted-[Agl3]-1 analogs exhibited functional selectivity on IL-1-induced signaling pathways. The described solid-phase method has provided discerning probes for exploring peptide structure-activity relationships and valuable leads for developing prototypes to treat inflammatory events leading to prematurity and retinopathy of prematurity, which are leading causes of infant morbidity and blindness respectively.

8.
Front Chem ; 7: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815434

RESUMO

Interleukin-1ß (IL-1ß) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1ß signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1ß and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-ß-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1ß-induced IL-1ß synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.

9.
Sci Rep ; 8(1): 11875, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089839

RESUMO

Antenatal inflammation as seen with chorioamnionitis is harmful to foetal/neonatal organ development including to eyes. Although the major pro-inflammatory cytokine IL-1ß participates in retinopathy induced by hyperoxia (a predisposing factor to retinopathy of prematurity), the specific role of antenatal IL-1ß associated with preterm birth (PTB) in retinal vasculopathy (independent of hyperoxia) is unknown. Using a murine model of PTB induced with IL-1ß injection in utero, we studied consequent retinal and choroidal vascular development; in this process we evaluated the efficacy of IL-1R antagonists. Eyes of foetuses exposed only to IL-1ß displayed high levels of pro-inflammatory genes, and a persistent postnatal infiltration of inflammatory cells. This prolonged inflammatory response was associated with: (1) a marked delay in retinal vessel growth; (2) long-lasting thinning of the choroid; and (3) long-term morphological and functional alterations of the retina. Antenatal administration of IL-1R antagonists - 101.10 (a modulator of IL-1R) more so than Kineret (competitive IL-1R antagonist) - prevented all deleterious effects of inflammation. This study unveils a key role for IL-1ß, a major mediator of chorioamnionitis, in causing sustained ocular inflammation and perinatal vascular eye injury, and highlights the efficacy of antenatal 101.10 to suppress deleterious inflammation.


Assuntos
Inflamação/metabolismo , Interleucina-1beta/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Vasos Retinianos/metabolismo , Animais , Corioamnionite/metabolismo , Corioide/metabolismo , Modelos Animais de Doenças , Feminino , Hiperóxia/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Camundongos , Gravidez , Receptores de Interleucina-1/metabolismo
10.
J Immunol ; 198(5): 2047-2062, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28148737

RESUMO

Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1ß induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1ß, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1ß, IL-6, and IL-8, increased IL-1ß, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.


Assuntos
Encéfalo/imunologia , Desenvolvimento Fetal/efeitos dos fármacos , Inflamação/imunologia , Interleucina-1beta/imunologia , Placenta/imunologia , Gravidez/imunologia , Nascimento Prematuro/imunologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico , Placenta/efeitos dos fármacos , Nascimento Prematuro/tratamento farmacológico
11.
FASEB J ; 30(6): 2370-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26979087

RESUMO

CC chemokine receptor type 2 (CCR2) is a key molecule in inflammatory diseases and is an obvious drug target for the treatment of inflammation. A number of nonpeptidic, competitive CCR2 antagonists have been developed, but none has yet been approved for clinical use. Our aim was to identify a short peptide that showed allosteric antagonism against human and mouse CCR2. On the basis of sequence analysis and 3-dimensional modeling, we identified an original 7-d-amino acid peptidic CCR2 inhibitor that we have called extracellular loop 1 inverso (ECL1i), d(LGTFLKC). In vitro, ECL1i selectively and potently inhibits CC chemokine ligand type 2 (CCL2)-triggered chemotaxis (IC50, 2 µM) but no other conventional CCL2-associated events. We used the classic competitive CCR2 antagonist, BMS22 {2-[(isopropylaminocarbonyl)amino]-N-[2-[[cis-2-[[4-(methylthio)benzoyl]amino]cyclohexyl]amino]-2-oxoethyl]-5-(trifluoromethyl)benzamide}, as positive control and inhibited CCL2-dependent chemotaxis with an IC50 of 18 nM. As negative control, we used a peptide with the same composition as ECL1i, but in a different sequence, d(FKLTLCG). In vivo, ECL1i (4 mg/kg) interfered with CCR2-positive cell recruitment and attenuated disease progression in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This study establishes ECL1i as the first allosteric inhibitor of CCR2 with functional selectivity. ECL1i is a promising new agent in therapeutic development, and it may, by its selective effect, increase our understanding of CCR2 signaling pathways and functions.-Auvynet, C., Baudesson de Chanville, C., Hermand, P., Dorgham, K., Piesse, C., Pouchy, C., Carlier, L., Poupel, L., Barthélémy, S., Felouzis, V., Lacombe, C., Sagan, S., Salomon, B., Deterre, P., Sennlaub, F., Combadière, C. ECL1i, d(LGTFLKC), a novel, small peptide that specifically inhibits CCL2-dependent migration.


Assuntos
Movimento Celular/fisiologia , Quimiocina CCL2/metabolismo , Oligopeptídeos/farmacologia , Receptores CCR2/metabolismo , Animais , Células CHO , Quimiocina CCL2/genética , Cricetulus , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Receptores CCR2/genética
12.
Cytokine Growth Factor Rev ; 28: 37-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26684042

RESUMO

Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.


Assuntos
Interleucina-1/imunologia , Trabalho de Parto Prematuro/imunologia , Animais , Feminino , Humanos , Recém-Nascido , Inflamação/imunologia , Terapia de Alvo Molecular , Trabalho de Parto Prematuro/prevenção & controle , Gravidez , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle
13.
J Immunol ; 195(7): 3402-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26304990

RESUMO

Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1ß, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R-biased ligand, termed rytvela (labeled 101.10) in delaying IL-1ß-, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil-containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.


Assuntos
Inflamação/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Peptídeos/farmacologia , Nascimento Prematuro/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Linhagem Celular , Feminino , Interleucina-1beta/imunologia , Camundongos , Miométrio/metabolismo , NF-kappa B/metabolismo , Gravidez , Receptores de Interleucina-1/antagonistas & inibidores , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Útero/imunologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
14.
Am J Physiol Regul Integr Comp Physiol ; 307(10): R1216-30, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25354400

RESUMO

IL-23 is part of the IL-12 family of cytokines and is composed of the p19 subunit specific to IL-23 and the p40 subunit shared with IL-12. IL-23 specifically contributes to the inflammatory process of multiple chronic inflammatory autoimmune disorders, including psoriasis, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis. So far, one antibody targeting the shared p40 subunit of IL-12 and IL-23, Ustekinumab, is approved clinically to treat psoriasis. However, there are no treatments inhibiting specifically the IL-23 proinflammatory response. We have developed small IL-23R-specific antagonists by designing all D-peptides arising from flexible regions of IL-23R. Of these peptides, we selected 2305 (teeeqqly), since in addition to its soluble properties, it inhibited IL-23-induced STAT3 phosphorylation in spleen cells. Peptide 2305 specifically binds to IL-23R/IL-12Rß1-expressing HEK-293 cells and not to cells devoid of the receptor. Peptide 2305 showed functional selectivity by modulating IL-23-induced gene expression in IL-23R/IL-12Rß1-expressing cells and in Jurkat cells; 2305 does not inhibit IL-12-induced cytokine expression in IL-12Rß-IL-12Rß2-HEK-293 cells. Finally, compared with anti-p40 treatment, 2305 effectively and selectively inhibits IL-23-induced inflammation in three in vivo mouse models: IL-23-induced ear inflammation, anti-CD40-induced systemic inflammatory response, and collagen-induced arthritis. We, hereby, describe the discovery and characterization of a potent IL-23R small-peptide modulator, 2305 (teeeqqly), that is effective in vivo. 2305 may be more convenient, less cumbersome, less costly, and most importantly, more specific than current biologics for the treatment of inflammatory conditions, and conceivably complement the actual therapies for these chronic and debilitating inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/prevenção & controle , Oligopeptídeos/farmacologia , Receptores de Interleucina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Desenho Assistido por Computador , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Subunidade beta 1 de Receptor de Interleucina-12/genética , Subunidade beta 1 de Receptor de Interleucina-12/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/química , Fosforilação , Receptores de Interleucina/química , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Fatores de Tempo , Transfecção
15.
Arterioscler Thromb Vasc Biol ; 33(8): 1881-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23766263

RESUMO

OBJECTIVE: Proinflammatory cytokines contribute to the development of retinal vasculopathies. However, the role of these factors and the mechanisms by which they elicit their effects in retina are not known. We investigated whether activated microglia during early stages of ischemic retinopathy produces excessive interleukin-1ß (IL-1ß), which elicits retinal microvascular degeneration not directly but rather by triggering the release of the proapoptotic/repulsive factor semaphorin-3A (Sema3A) from neurons. APPROACH AND RESULTS: Sprague Dawley rats subjected to retinopathy induced by hyperoxia (80% O2; O2-induced retinopathy) exhibited retinal vaso-obliteration associated with microglial activation, NLRP3 upregulation, and IL-1ß and Sema3A release; IL-1ß was mostly generated by microglia. Intraperitoneal administration of IL-1 receptor antagonists (Kineret, or rytvela [101.10]) decreased these effects and enhanced retinal revascularization; knockdown of Sema3A resulted in microvessel preservation and, conversely, administration of IL-1ß caused vaso-obliteration. In vitro, IL-1ß derived from activated primary microglial cells, cultured under hyperoxia, stimulated the release of Sema3A in retinal ganglion cells-5, which in turn induced apoptosis of microvascular endothelium; antagonism of IL-1 receptor decreased microglial activation and on retinal ganglion cells-5 abolished the release of Sema3A inhibiting ensuing endothelial cell apoptosis. IL-1ß was not directly cytotoxic to endothelial cells. CONCLUSIONS: Our findings suggest that in the early stages of O2-induced retinopathy, retinal microglia are activated to produce IL-1ß, which sustains the activation of microglia and induces microvascular injury through the release of Sema3A from adjacent neurons. Interference with IL-1 receptor or Sema3A actions preserves the microvascular bed in ischemic retinopathies and, consequently, decreases ensued pathological preretinal neovascularization.


Assuntos
Interleucina-1beta/metabolismo , Isquemia/patologia , Microglia/patologia , Doenças Retinianas/patologia , Retinite/patologia , Semaforina-3A/metabolismo , Animais , Antirreumáticos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proteínas de Transporte , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Hiperóxia/imunologia , Hiperóxia/metabolismo , Hiperóxia/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Isquemia/tratamento farmacológico , Isquemia/imunologia , Microcirculação/fisiologia , Microglia/imunologia , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Peptídeos/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/imunologia , Células Ganglionares da Retina/imunologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Retinite/tratamento farmacológico , Retinite/imunologia , Semaforina-3A/genética , Semaforina-3A/imunologia
16.
Arterioscler Thromb Vasc Biol ; 33(5): 954-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23520164

RESUMO

OBJECTIVE: Nitro-oxidative stress exerts a significant role in the genesis of hypoxic-ischemic (HI) brain injury. We previously reported that the ω-6 long chain fatty acids, transarachidonic acids (TAAs), which are nitrative stress-induced nonenzymatically generated arachidonic acid derivatives, trigger selective microvascular endothelial cell death in neonatal neural tissue. The primary molecular target of TAAs remains unidentified. GPR40 is a G protein-coupled receptor activated by long chain fatty acids, including ω-6; it is highly expressed in brain, but its functions in this tissue are largely unknown. We hypothesized that TAAs play a significant role in neonatal HI-induced cerebral microvascular degeneration through GPR40 activation. APPROACH AND RESULTS: Within 24 hours of a HI insult to postnatal day 7 rat pups, a cerebral infarct and a 40% decrease in cerebrovascular density was observed. These effects were associated with an increase in nitrative stress markers (3-nitrotyrosine immunoreactivity and TAA levels) and were reduced by treatment with nitric oxide synthase inhibitor. GPR40 was expressed in rat pup brain microvasculature. In vitro, in GPR40-expressing human embryonic kidney (HEK)-293 cells, [(14)C]-14E-AA (radiolabeled TAA) bound specifically, and TAA induced calcium transients, extracellular signal-regulated kinase 1/2 phosphorylation, and proapoptotic thrombospondin-1 expression. In vivo, intracerebroventricular injection of TAAs triggered thrombospondin-1 expression and cerebral microvascular degeneration in wild-type mice, but not in GPR40-null congeners. Additionally, HI-induced neurovascular degeneration and cerebral infarct were decreased in GPR40-null mice. CONCLUSIONS: GPR40 emerges as the first identified G protein-coupled receptor conveying actions of nonenzymatically generated nitro-oxidative products, specifically TAAs, and is involved in (neonatal) HI encephalopathy.


Assuntos
Ácido Araquidônico/metabolismo , Infarto Cerebral/etiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Endoteliais/fisiologia , Feminino , Células HEK293 , Humanos , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
17.
Am J Physiol Regul Integr Comp Physiol ; 304(1): R10-22, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23152113

RESUMO

Acute renal failure (ARF) is a serious medical complication characterized by an abrupt and sustained decline in renal function. Despite significant advances in supportive care, there is currently no effective treatment to restore renal function. PGE(2) is a lipid hormone mediator abundantly produced in the kidney, where it acts locally to regulate renal function; several studies suggest that modulating EP(4) receptor activity could improve renal function following kidney injury. An optimized peptidomimetic ligand of EP(4) receptor, THG213.29, was tested for its efficacy to improve renal function (glomerular filtration rate, renal plasma flow, and urine output) and histological changes in a model of ARF induced by either cisplatin or renal artery occlusion in Sprague-Dawley rats. THG213.29 modulated PGE(2)-binding dissociation kinetics, indicative of an allosteric binding mode. Consistently, THG213.29 antagonized EP(4)-mediated relaxation of piglet saphenous vein rings, partially inhibited EP(4)-mediated cAMP production, but did not affect Gα(i) activation or ß-arrestin recruitment. In vivo, THG213.29 significantly improved renal function and histological changes in cisplatin- and renal artery occlusion-induced ARF models. THG213.29 increased mRNA expression of heme-oxygenase 1, Bcl2, and FGF-2 in renal cortex; correspondingly, in EP(4)-transfected HEK293 cells, THG213.29 augmented FGF-2 and abrogated EP(4)-dependent overexpression of inflammatory IL-6 and of apoptotic death domain-associated protein and BCL2-associated agonist of cell death. Our results demonstrate that THG213.29 represents a novel class of diuretic agent with noncompetitive allosteric modulator effects on EP(4) receptor, resulting in improved renal function and integrity following acute renal failure.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/fisiologia , Oligopeptídeos/uso terapêutico , Receptores de Prostaglandina E Subtipo EP4/agonistas , Recuperação de Função Fisiológica/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Cisplatino/efeitos adversos , AMP Cíclico/biossíntese , Modelos Animais de Doenças , Cães , Feminino , Fator 2 de Crescimento de Fibroblastos/biossíntese , Taxa de Filtração Glomerular/efeitos dos fármacos , Células HEK293 , Heme Oxigenase-1/biossíntese , Humanos , Interleucina-6/biossíntese , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Ratos , Ratos Sprague-Dawley , Fluxo Plasmático Renal/fisiologia , Veia Safena/efeitos dos fármacos , Veia Safena/patologia , Suínos/fisiologia
18.
J Pept Sci ; 17(4): 288-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21294228

RESUMO

The relationship between the conformation and biological activity of the peptide allosteric modulator of the interleukin-1 receptor 101.10 (D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala-NH2) has been studied using (R)- and (S)-Bgl residues. Twelve Bgl peptides were synthesized using (R)- and (S)-cyclic sulfamidate reagents derived from L- and D-aspartic acid in an optimized Fmoc-compatible protocol for efficient lactam installment onto the supported peptide resin. Examination of these (R)- and (S)-Bgl 101.10 analogs for their potential to inhibit IL-1ß-induced thymocyte cell proliferation using a novel fluorescence assay revealed that certain analogs exhibited retained and improved potency relative to the parent peptide 101.10. In light of previous reports that Bgl residues may stabilize type II'ß-turn-like conformations in peptides, CD spectroscopy was performed on selected compounds to identify secondary structure necessary for peptide biological activity. Results indicate that the presence of a fold about the central residues of the parent peptide may be important for activity.


Assuntos
Peptídeos/química , Estrutura Secundária de Proteína , Receptores de Interleucina-1/química , beta-Lactamas/química , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Biol Chem ; 285(33): 25624-36, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20551320

RESUMO

The prostaglandin F2alpha (PGF2alpha) receptor (FP) is a key regulator of parturition and a target for pharmacological management of preterm labor. However, an incomplete understanding of signaling pathways regulating myometrial contraction hinders the development of improved therapeutics. Here we used a peptidomimetic inhibitor of parturition in mice, PDC113.824, whose structure was based on the NH(2)-terminal region of the second extracellular loop of FP receptor, to gain mechanistic insight underlying FP receptor-mediated cell responses in the context of parturition. We show that PDC113.824 not only delayed normal parturition in mice but also that it inhibited both PGF2alpha- and lipopolysaccharide-induced preterm labor. PDC113.824 inhibited PGF2alpha-mediated, G(alpha)(12)-dependent activation of the Rho/ROCK signaling pathways, actin remodeling, and contraction of human myometrial cells likely by acting as a non-competitive, allosteric modulator of PGF2alpha binding. In contrast to its negative allosteric modulating effects on Rho/ROCK signaling, PDC113.824 acted as a positive allosteric modulator on PGF2alpha-mediated protein kinase C and ERK1/2 signaling. This bias in receptor-dependent signaling was explained by an increase in FP receptor coupling to G(alpha)(q), at the expense of coupling to G(alpha)(12). Our findings regarding the allosteric and biased nature of PDC113.824 offer new mechanistic insights into FP receptor signaling relevant to parturition and suggest novel therapeutic opportunities for the development of new tocolytic drugs.


Assuntos
Dinoprosta/metabolismo , Parto/efeitos dos fármacos , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Feminino , Imunofluorescência , Humanos , Camundongos , Trabalho de Parto Prematuro/induzido quimicamente , Trabalho de Parto Prematuro/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/uso terapêutico , Gravidez , Proteína Quinase C/metabolismo
20.
Biopolymers ; 94(2): 183-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20225301

RESUMO

The insertion of lactams into peptide analogs can enhance potency and improve receptor selectivity. The synthesis of lactam-bridged peptide sequences has been accomplished by a solid-phase approach on SynPhase lanterns using cyclic (R)- and (S)-oxathiazinane ester (2) to annulate the amino lactam residue onto the peptide chain. Parallel synthesis of alpha-amino gamma-lactam analogs of the allosteric modulator of IL-1 receptor 101.10 (D-Arg-D-Tyr-D-Thr-D-Val-D-Glu-D-Leu-D-Ala: rytvela) was performed by split-mix chemistry on the lanterns. In particular, the double insertion of alpha-amino gamma-lactams in the same peptide sequence has been accomplished by this effective method for the solid-supported combinatorial synthesis of lactam-bridged peptides. Peptides bearing an Agl residue exhibited curve shapes indicative of turn conformations in their circular dichroism spectra.


Assuntos
Técnicas de Química Combinatória , Etinilestradiol/química , Proteína Antagonista do Receptor de Interleucina 1/química , Lactamas/química , Noretindrona/química , Peptídeos/química , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Combinação de Medicamentos , Etinilestradiol/farmacologia , Humanos , Interleucina-1/antagonistas & inibidores , Lactamas/farmacologia , Estrutura Molecular , Noretindrona/farmacologia , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...