Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1328520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426207

RESUMO

Introduction: Muscle reinnervation (MR) surgery offers rehabilitative benefits to amputees by taking severely damaged nerves and providing them with new denervated muscle targets (DMTs). However, the influence of physical changes to muscle tissue during MR surgery on long-term functional outcomes remains understudied. Methods: Our rat hindlimb model of MR surgery utilizes vascularized, directly neurotized DMTs made from the lateral gastrocnemius (LG), which we employed to assess the impact of muscle tissue size on reinnervation outcomes, specifically pairing the DMT with the transected peroneal nerve. We conducted MR surgery with both DMTs at full volume and DMTs with partial volume loss of 500 mg at the time of surgery (n = 6 per group) and measured functional outcomes after 100 days of reinnervation. Compound motor action potentials (CMAPs) and isometric tetanic force production was recorded from reinnervated DMTs and compared to contralateral naïve LG muscles as positive controls. Results: Reinnervated DMTs consistently exhibited lower mass than positive controls, while DMTs with partial volume loss showed no significant mass reduction compared to full volume DMTs (p = 0.872). CMAP amplitudes were lower on average in reinnervated DMTs, but a broad linear correlation also exists between muscle mass and maximum CMAP amplitude irrespective of surgical group (R2 = 0.495). Surprisingly, neither MR group, with or without volume loss, demonstrated decreased force compared to positive controls. The average force output of reinnervated DMTs, as a fraction of the contralateral LG's force output, approached 100% for both MR groups, a notable deviation from the 9.6% (±6.3%) force output observed in our negative control group at 7 days post-surgery. Tissue histology analysis revealed few significant differences except for a marked decrease in average muscle fiber area of reinnervated DMTs with volume loss compared to positive controls (p = 0.001). Discussion: The results from our rat model of MR suggests that tissue electrophysiology (CMAPs) and kinesiology (force production) may recover on different time scales, with volumetric muscle loss at the time of MR surgery not significantly reducing functional outcome measurements for the DMTs after 100 days of reinnervation.

2.
Muscle Nerve ; 69(2): 134-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126120

RESUMO

After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.


Assuntos
Membros Artificiais , Músculo Esquelético , Eletrodos
3.
Elife ; 122023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113081

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Assuntos
Neurônios Motores , Primatas , Ratos , Camundongos , Animais , Neurônios Motores/fisiologia , Eletrodos , Fibras Musculares Esqueléticas
4.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36865176

RESUMO

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...