Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 20(6): 785-814, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32466662

RESUMO

On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Cavernas , Simulação por Computador , Gelo , Voo Espacial
2.
Science ; 325(5936): 64-7, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574385

RESUMO

The Wet Chemistry Laboratory on the Phoenix Mars Lander performed aqueous chemical analyses of martian soil from the polygon-patterned northern plains of the Vastitas Borealis. The solutions contained approximately 10 mM of dissolved salts with 0.4 to 0.6% perchlorate (ClO4) by mass leached from each sample. The remaining anions included small concentrations of chloride, bicarbonate, and possibly sulfate. Cations were dominated by Mg2+ and Na+, with small contributions from K+ and Ca2+. A moderately alkaline pH of 7.7 +/- 0.5 was measured, consistent with a carbonate-buffered solution. Samples analyzed from the surface and the excavated boundary of the approximately 5-centimeter-deep ice table showed no significant difference in soluble chemistry.


Assuntos
Ânions , Cátions , Marte , Percloratos , Fenômenos Químicos , Meio Ambiente Extraterreno , Concentração de Íons de Hidrogênio , Oxirredução , Solubilidade , Astronave , Temperatura , Água
3.
Science ; 325(5936): 61-4, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19574384

RESUMO

Carbonates are generally products of aqueous processes and may hold important clues about the history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry showing an endothermic transition beginning around 725 degrees C accompanied by evolution of carbon dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical kinetics, the amount of calcium carbonate is most consistent with formation in the past by the interaction of atmospheric carbon dioxide with liquid water films on particle surfaces.


Assuntos
Carbonato de Cálcio , Marte , Dióxido de Carbono , Precipitação Química , Meio Ambiente Extraterreno , Temperatura Alta , Concentração de Íons de Hidrogênio , Astronave , Água
4.
Orig Life Evol Biosph ; 29(1): 59-72, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10077869

RESUMO

Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.


Assuntos
Peróxido de Hidrogênio , Marte , Oxidantes , Solo/análise , Titânio/química , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Titânio/metabolismo
5.
Planet Space Sci ; 46(6-7): 769-77, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-11541819

RESUMO

The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.


Assuntos
Exobiologia/instrumentação , Marte , Oxidantes/química , Solo/análise , Voo Espacial/instrumentação , Microanálise por Sonda Eletrônica , Umidade , Meteoroides , Compostos Orgânicos , Oxidantes/análise , Oxirredução , Oxigênio/química , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...