Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169471, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145668

RESUMO

Landfilling is the most usual solid waste management strategy for solid residues disposal. However, it entails several drawbacks such as the generation of landfill leachate that seriously threaten human life and the environment due to their toxicity and carcinogenic character. Among various technologies, solar photo-Fenton and sulphate-based processes have proven to be suitable for the treatment of these polluted streams. This review critically summarises the last three decades of studies in this field. It is found that the solar homogeneous photo-Fenton process should be preferably used as a pre- and post-treatment of biological technologies and as a standalone treatment for young, medium, and mature leachates, respectively. Studies on heterogeneous solar photo-Fenton process are lacking so that this technology may be scaled-up for industrial applications. Sulphate radicals are attractive for removing both COD and ammonia. However, no study has been reported on solar sulphate activation for landfill leachate treatment. This review discusses the main advances and challenges on treating landfill leachate through solar AOPs, it compares solar photo-Fenton and solar persulphate-based treatments, indicates the future research directions and contributes for a better understanding of these technologies towards sustainable treatment of landfill leachate in sunny and not-so-sunny regions.

2.
J Comput Neurosci ; 41(3): 323-337, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696002

RESUMO

Zinc, a transition metal existing in very high concentrations in the hippocampal mossy fibers from CA3 area, is assumed to be co-released with glutamate and to have a neuromodulatory role at the corresponding synapses. The synaptic action of zinc is determined both by the spatiotemporal characteristics of the zinc release process and by the kinetics of zinc binding to sites located in the cleft area, as well as by their concentrations. This work addresses total, free and complexed zinc concentration changes, in an individual synaptic cleft, following single, short and long periods of evoked zinc release. The results estimate the magnitude and time course of the concentrations of zinc complexes, assuming that the dynamics of the release processes are similar to those of glutamate. It is also considered that, for the cleft zinc concentrations used in the model (≤ 1 µM), there is no postsynaptic zinc entry. For this reason, all released zinc ends up being reuptaken in a process that is several orders of magnitude slower than that of release and has thus a much smaller amplitude. The time derivative of the total zinc concentration in the cleft is represented by the difference between two alpha functions, corresponding to the released and uptaken components. These include specific parameters that were chosen assuming zinc and glutamate co-release, with similar time courses. The peak amplitudes of free zinc in the cleft were selected based on previously reported experimental cleft zinc concentration changes evoked by single and multiple stimulation protocols. The results suggest that following a low amount of zinc release, similar to that associated with one or a few stimuli, zinc clearance is mainly mediated by zinc binding to the high-affinity sites on the NMDA receptors and to the low-affinity sites on the highly abundant GLAST glutamate transporters. In the case of higher zinc release brought about by a larger group of stimuli, most zinc binding occurs essentially to the GLAST transporters, having the corresponding zinc complex a maximum concentration that is more than one order of magnitude larger than that for the high and low affinity NMDA sites. The other zinc complexes considered in the model, namely those formed with sites on the AMPA receptors, calcium and KATP channels and with ATP molecules, have much smaller contributions to the synaptic zinc clearance.


Assuntos
Modelos Neurológicos , Fibras Musgosas Hipocampais/fisiologia , Sinapses/metabolismo , Zinco/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...