Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1130186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091678

RESUMO

Anemia is a common malaria-associated complication in pregnant women in endemic regions. Phosphatidylserine (PS) is exposed to the immune system during the massive destruction of red blood cells (RBCs) that accompany malaria, and antibodies against PS have been linked to anemia through destruction of uninfected RBCs. We determined levels of anti-PS IgG antibodies in pregnant women in Ibadan, Nigeria and correlated them to parameters of importance in development of anemia and immunity. Anti-PS correlated inversely with Packed Cell Volume (PCV), indicating that the antibodies could contribute to anemia. There was no correlation with anti-VAR2CSA IgG, haptoglobin or parasitemia, indicating that the modulation of anti-PS response is multifactorial in nature. Anti-PS levels were lowest in multigravidae compared to both primigravidae and secundigravidae and correlated inversely with age. In conclusion, lower levels of anti-PS in multigravidae could be beneficial in avoiding anemia.


Assuntos
Anemia , Malária Falciparum , Malária , Humanos , Gravidez , Feminino , Gestantes , Nigéria/epidemiologia , Fosfatidilserinas , Malária/complicações , Anemia/complicações , Imunoglobulina G , Plasmodium falciparum , Antígenos de Protozoários , Anticorpos Antiprotozoários
2.
J Infect Dis ; 228(2): 196-201, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36740589

RESUMO

Parasitemia among pregnant women with protective immunity to Plasmodium falciparum malaria is often dominated by VAR2CSA-positive infected erythrocytes (IEs). VAR2CSA mediates sequestration of IEs in the placenta. We hypothesized that the previously observed spontaneous postpartum clearance of parasitemia in such women is related to the expulsion of the placenta, which removes the sequestration focus of VAR2CSA-positive IEs. We assessed parasitemias and gene transcription before and shortly after delivery in 17 Ghanaian women. The precipitous decline in parasitemia postpartum was accompanied by selective reduction in transcription of the gene encoding VAR2CSA. Our findings provide a mechanistic explanation for the earlier observation.


Assuntos
Malária Falciparum , Complicações Parasitárias na Gravidez , Feminino , Gravidez , Humanos , Plasmodium falciparum/genética , Parasitemia , Gana , Antígenos de Protozoários , Proteínas de Protozoários , Placenta , Eritrócitos , Período Pós-Parto , Anticorpos Antiprotozoários
3.
PLoS Pathog ; 18(11): e1010924, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383559

RESUMO

Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4's broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria.


Assuntos
Malária Falciparum , Malária , Humanos , Feminino , Gravidez , Antígenos de Protozoários , Malária Falciparum/parasitologia , Epitopos , Anticorpos Antiprotozoários , Anticorpos Monoclonais , Microscopia Crioeletrônica , Placenta/metabolismo , Plasmodium falciparum/metabolismo , Eritrócitos/parasitologia , Sulfatos de Condroitina/metabolismo
4.
Elife ; 112022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838346

RESUMO

The issue of antibody cross-reactivity is of central importance in immunology, and not least in protective immunity to Plasmodium falciparum malaria, where key antigens show substantial allelic variation (polymorphism). However, serological analysis often does not allow the distinction between true cross-reactivity (one antibody recognizing multiple antigen variants) and apparent cross-reactivity (presence of multiple variant-specific antibodies), as it requires analysis at the single B-cell/monoclonal antibody level. ELISpot is an assay that enables that, and a recently developed multiplexed variant of ELISpot (FluoroSpot) facilitates simultaneous assessment of B-cell/antibody reactivity to several different antigens. In this study, we present a further enhancement of this assay that makes direct analysis of monoclonal antibody-level cross-reactivity with allelic variants feasible. Using VAR2CSA-type PfEMP1-a notoriously polymorphic antigen involved in the pathogenesis of placental malaria-as a model, we demonstrate the robustness of the assay and its applicability to analysis of true cross-reactivity of monoclonal VAR2CSA-specific antibodies in naturally exposed individuals. The assay is adaptable to the analysis of other polymorphic antigens, rendering it a powerful tool in studies of immunity to malaria and many other diseases.


Assuntos
Antígenos de Protozoários , Malária Falciparum , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos , Antígenos de Protozoários/genética , Feminino , Humanos , Imunoglobulina G , Placenta , Plasmodium falciparum , Gravidez , Proteínas de Protozoários
5.
Methods Mol Biol ; 2470: 273-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881352

RESUMO

The genome of Plasmodium falciparum has an A/T content of around 81%. This, together with a high cysteine content and the high molecular weight of several proteins, make the expression of recombinant parasite proteins in heterologous systems challenging. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins composed of several Duffy-binding like (DBL) and cysteine-rich inter-domain region (CIDR) domains involved in cytoadhesion to human host receptors and development of severe malaria. Expression of correctly folded single- and multiple-domain PfEMP1 fragment regions containing cysteines forming disulfide bonds, remains particularly difficult. Nevertheless, expression of single DBL and CIDR domains has been successful and this protocol describes the expression and purification of single-domain soluble PfEMP1 fragments using the Escherichia coli SHuffle expression system.


Assuntos
Malária Falciparum , Proteínas de Protozoários , Antígenos de Protozoários , Cisteína/metabolismo , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Methods Mol Biol ; 2470: 493-503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881369

RESUMO

Rosetting is the ability of Plasmodium falciparum-infected erythrocytes (IEs) to bind to host receptors on the surface of uninfected erythrocytes (uE) leading to the formation of a cluster of cells with a central IE surrounded by uE. It is a hallmark event during the pathogenesis of P. falciparum malaria, the most severe species causing malaria, which affects mostly young children in Africa. There are no current treatments effectively targeting and disrupting parasite rosette formation. Here, we detail a high-throughput, flow cytometry based assay that allows testing and identification of potential rosetting-inhibitory compounds that could be used in combination with anti-plasmodial drugs to reduce malaria morbidity and mortality.


Assuntos
Malária Falciparum , Parasitos , Animais , Criança , Pré-Escolar , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Formação de Roseta
7.
Life (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35455036

RESUMO

The accumulation process of proinflammatory components in the body due to aging influences intercellular communication and is known as inflammaging. This biological mechanism relates the development of inflammation to the aging process. Recently, it has been reported that small extracellular vesicles (sEVs) are mediators in the transmission of paracrine senescence involved in inflammatory aging. For this reason, their components, as well as mechanisms of action of sEVs, are relevant to develop a new therapy called senodrugs (senolytics and senomorphic) that regulates the intercellular communication of inflammaging. In this review, we include the most recent and relevant studies on the role of sEVs in the inflammatory aging process and in age-related diseases such as cancer and type 2 diabetes.

8.
Gac. méd. espirit ; 23(2): 107-114, 2021. graf
Artigo em Espanhol | LILACS | ID: biblio-1339939

RESUMO

RESUMEN Fundamento: El dispositivo intrauterino ha sido utilizado durante muchos años como método anticonceptivo; una complicación infrecuente posterior a su inserción es la migración fuera del útero. La localización vesical y la formación de vesicolitiasis, son complicaciones asociadas a la migración. Objetivo: Presentar un caso de migración de un dispositivo intrauterino a vejiga con litiasis sobreañadida como inusual etiología de una cistitis recurrente. Presentación del caso: Caso clínico de un dispositivo intrauterino en vejiga en una paciente de 43 años, cuyo diagnóstico se realizó incidentalmente en estudio de cistitis recurrente; se diagnosticó imagenológica y endoscópicamente en consulta de Urología; se decidió tratamiento quirúrgico mediante cistolitotomía a cielo abierto y se extrajo un cálculo de 4x5 cm de diámetro. La paciente evolucionó satisfactoriamente. Conclusiones: Considérese la posibilidad de migración del dispositivo intrauterino a la vejiga con litiasis sobreañadida como causa de cistitis recurrente, en pacientes femeninas que tengan antecedente de uso de este método anticonceptivo, lo que constituye un elemento importante en el diagnóstico y tratamiento de la infección urinaria baja.


ABSTRACT Background: The intrauterine device has been used for years as a contraceptive method; a non-frequent complication after its insertion is migration out of the uterus. The bladder location and the formation of vesicolithiasis are complications associated with migration. Objective: To present a migration case from an intrauterine device to the bladder with overadded lithiasis as an unusual etiology of recurrent cystitis. Case report: Clinical case of an intrauterine device in the bladder in a 43-year-old patient, whose diagnosis was made incidentally in a recurrent cystitis study, it was diagnosed by imaging and endoscopy in the Urology consultation; surgical treatment was decided by means of open cystolithotomy and a stone 4x5 cm in diameter was extracted. The patient evolved satisfactorily. Conclusions: To consider the possibility of migration of the intrauterine device to the bladder with overadded lithiasis as a cause of recurrent cystitis in female patients who have a preceding use of this contraceptive method, thus it constitutes an important element in the diagnosis and treatment of urinary lower infection.


Assuntos
Perfuração Uterina , Cálculos da Bexiga Urinária , Cistite/epidemiologia , Migração de Dispositivo Intrauterino , Dispositivos Intrauterinos
9.
mSphere ; 6(3): e0039121, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34047650

RESUMO

Maria del Pilar Quintana works on immunology and pathogenesis of severe malaria. In this mSphere of Influence article, she reflects on how the papers "Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA" (R. Ma, T. Lian, R. Huang, J. P. Renn, J. D. Petersen, J. Zimmerberg, P. E. Duffy, N. H. Tolia, Nat Microbiol 6:380-391, 2021, https://doi.org/10.1038/s41564-020-00858-9) and "Cryo-EM reveals the architecture of placental malaria VAR2CSA and provides molecular insight into chondroitin sulfate binding" (K. Wang, R. Dagil, T. Lavsten, S. K. Misra, C. B. Spliid, Y. Wang, T. Gustavsson, D. R. Sandoval, E. E. Vidal-Calvo, S. Choudary, M. O. Agerback, K. Lindorff-Larsen, M. A. Nielsen, T. G. Theander, J. S. Sharp, T. M. Clausen, P. Gourdon, A. Salanti, A. Salanti, Nat Commun 12:2956, 2021, https://doi.org/10.1038/s41467-021-23254-1) shed light on the precise structural details behind Plasmodium falciparum VAR2CSA binding to chondroitin sulfate A (CSA) in the placenta and how these novel insights have changed the way she will approach her work toward the discovery of new broadly cross-reactive/inhibitory antibodies targeting VAR2CSA.


Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Malária Falciparum/genética , Malária Falciparum/parasitologia , Placenta/parasitologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Feminino , Humanos , Plasmodium falciparum/imunologia , Gravidez , Ligação Proteica
10.
J Vis Exp ; (162)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32831311

RESUMO

The protocol describes how to set up and run a flow cytometry-based phagocytosis assay of Plasmodium falciparum-infected erythrocytes (IEs) opsonized by naturally acquired IgG antibodies specific for VAR2CSA. VAR2CSA is the parasite antigen that mediates the selective sequestration of IEs in the placenta that can cause a severe form of malaria in pregnant women, called placental malaria (PM). Protection from PM is mediated by VAR2CSA-specific antibodies that are believed to function by inhibiting placental sequestration and/or by opsonizing IEs for phagocytosis. The assay employs late-stage-synchronized IEs that have been selected in vitro to express VAR2CSA, plasma/serum-antibodies from women with naturally acquired PM-specific immunity, and the phagocytic cell line THP-1. However, the protocol can easily be modified to assay the functionality of antibodies to any parasite antigen present on the IE surface, whether induced by natural exposure or by vaccination. The assay offers simple and high-throughput evaluation, with good reproducibility, of an important functional aspect of antibody-mediated immunity in malaria. It is, therefore, useful when evaluating clinical immunity to P. falciparum malaria, a major cause of morbidity and mortality in the tropics, particularly in sub-Saharan Africa.


Assuntos
Anticorpos Antiprotozoários/análise , Bioensaio/métodos , Citometria de Fluxo/métodos , Parasitos/imunologia , Fagocitose , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Proteínas Opsonizantes/metabolismo , Gravidez , Receptores Fc/metabolismo , Reprodutibilidade dos Testes , Células THP-1
11.
APMIS ; 128(2): 129-135, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32133709

RESUMO

Burkitt lymphoma (BL) is an aggressive non-Hodgkin lymphoma. The prevalence of BL is ten-fold higher in areas with stable transmission of Plasmodium falciparum malaria, where it is the most common childhood cancer, and is referred to as endemic BL (eBL). In addition to its association with exposure to P. falciparum infection, eBL is strongly associated with Epstein-Barr virus (EBV) infection (>90%). This is in contrast to BL as it occurs outside P. falciparum-endemic areas (sporadic BL), where only a minority of the tumours are EBV-positive. Although the striking geographical overlap in the distribution of eBL and P. falciparum was noted shortly after the first detailed description of eBL in 1958, the molecular details of the interaction between malaria and eBL remain unresolved. It is furthermore unexplained why exposure to P. falciparum appears to be essentially a prerequisite to the development of eBL, whereas other types of malaria parasites that infect humans have no impact. In this brief review, we summarize how malaria exposure may precipitate the malignant transformation of a B-cell clone that leads to eBL, and propose an explanation for why P. falciparum uniquely has this capacity.


Assuntos
Linfoma de Burkitt/etiologia , Linfoma de Burkitt/parasitologia , Malária Falciparum/complicações , Parasitos/patogenicidade , Plasmodium falciparum/patogenicidade , Animais , Criança , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/patogenicidade , Humanos , Malária Falciparum/parasitologia
12.
Sci Rep ; 9(1): 6050, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988351

RESUMO

PfEMP1 is a family of adhesive proteins expressed on the surface of Plasmodium falciparum-infected erythrocytes (IEs), where they mediate adhesion of IEs to a range of host receptors. Efficient PfEMP1-dependent IE sequestration often depends on soluble serum proteins, including IgM. Here, we report a comprehensive investigation of which of the about 60 var gene-encoded PfEMP1 variants per parasite genome can bind IgM via the Fc part of the antibody molecule, and which of the constituent domains of those PfEMP1 are involved. We erased the epigenetic memory of var gene expression in three distinct P. falciparum clones, 3D7, HB3, and IT4/FCR3 by promoter titration, and then isolated individual IEs binding IgM from malaria-unexposed individuals by fluorescence-activated single-cell sorting. The var gene transcription profiles of sub-clones measured by real-time qPCR were used to identify potential IgM-binding PfEMP1 variants. Recombinant DBL and CIDR domains corresponding to those variants were tested by ELISA and protein arrays to confirm their IgM-binding capacity. Selected DBL domains were used to raise specific rat anti-sera to select IEs with uniform expression of candidate PfEMP1 proteins. Our data document that IgM-binding PfEMP1 proteins are common in each of the three clones studied, and that the binding epitopes are mainly found in DBLε and DBLζ domains near the C-terminus.


Assuntos
Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/metabolismo , Imunoglobulina M/metabolismo , Malária Falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genes de Protozoários/genética , Variação Genética/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina M/imunologia , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
13.
PLoS One ; 13(8): e0201669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092030

RESUMO

Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Proteínas de Membrana/metabolismo , Merozoítos/patogenicidade , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/metabolismo , Humanos , Malária Falciparum/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Coelhos
14.
Sci Rep ; 8(1): 3262, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459776

RESUMO

Naturally acquired antibodies to proteins expressed on the Plasmodium falciparum parasitized red blood cell (pRBC) surface steer the course of a malaria infection by reducing sequestration and stimulating phagocytosis of pRBC. Here we have studied a selection of proteins representing three different parasite gene families employing a well-characterized parasite with a severe malaria phenotype (FCR3S1.2). The presence of naturally acquired antibodies, impact on rosetting rate, surface reactivity and opsonization for phagocytosis in relation to different blood groups of the ABO system were assessed in a set of sera from children with mild or complicated malaria from an endemic area. We show that the naturally acquired immune responses, developed during malaria natural infection, have limited access to the pRBCs inside a blood group A rosette. The data also indicate that SURFIN4.2 may have a function at the pRBC surface, particularly during rosette formation, this role however needs to be further validated. Our results also indicate epitopes differentially recognized by rosette-disrupting antibodies on a peptide array. Antibodies towards parasite-derived proteins such as PfEMP1, RIFIN and SURFIN in combination with host factors, essentially the ABO blood group of a malaria patient, are suggested to determine the outcome of a malaria infection.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Sistema ABO de Grupos Sanguíneos/análise , Criança , Pré-Escolar , Eritrócitos/parasitologia , Humanos , Lactente , Malária Falciparum/parasitologia , Proteínas Opsonizantes/sangue , Fagocitose , Formação de Roseta
15.
Front Immunol ; 9: 3088, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666256

RESUMO

Members of the PfEMP1 protein family are expressed on the surface of P. falciparum-infected erythrocytes (IEs), where they contribute to the pathogenesis of malaria and are important targets of acquired immunity. Although the PfEMP1-specific antibody response is dominated by the opsonizing and complement-fixing subclasses IgG1 and IgG3, activation of the classical complement pathway by antibody-opsonized IEs does not appear to be a major immune effector mechanism. To study the molecular background for this, we used ELISA and flow cytometry to assess activation of the classical component pathway by recombinant and native PfEMP1 antigen opsonized by polyclonal and monoclonal PfEMP1-specific human IgG. Polyclonal IgG specific for VAR2CSA-type PfEMP1 purified from a pool of human immune plasma efficiently activated the classical complement pathway when bound to recombinant PfEMP1 in ELISA. In contrast, no activation of complement could be detected by flow cytometry when the same IgG preparation was used to opsonize IEs expressing the corresponding native PfEMP1 antigen. After engineering of a VAR2CSA-specific monoclonal antibody to facilitate its on-target hexamerization, complement activation was detectable in an ELISA optimized for uniform orientation of the immobilized antigen. In contrast, the antibody remained unable to activate complement when bound to native VAR2CSA on IEs. Our data suggest that the display of PfEMP1 proteins on IEs is optimized to prevent activation of the classical complement pathway, and thus represents a hitherto unappreciated parasite strategy to evade acquired immunity to malaria.


Assuntos
Antígenos de Protozoários/imunologia , Via Clássica do Complemento/imunologia , Eritrócitos/parasitologia , Imunoglobulina G/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Superfície/imunologia , Complemento C1q/metabolismo , Complemento C4/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Malária Falciparum/sangue , Fagocitose , Ligação Proteica , Proteínas de Protozoários/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
16.
Nat Microbiol ; 2: 17068, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481333

RESUMO

Pregnancy-associated malaria commonly involves the binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate A (CSA) through the PfEMP1-VAR2CSA protein. VAR2CSA is translationally repressed by an upstream open reading frame. In this study, we report that the P. falciparum translation enhancing factor (PTEF) relieves upstream open reading frame repression and thereby facilitates VAR2CSA translation. VAR2CSA protein levels in var2csa-transcribing parasites are dependent on the expression level of PTEF, and the alleviation of upstream open reading frame repression requires the proteolytic processing of PTEF by PfCalpain. Cleavage generates a C-terminal domain that contains a sterile-alpha-motif-like domain. The C-terminal domain is permissive to cytoplasmic shuttling and interacts with ribosomes to facilitate translational derepression of the var2csa coding sequence. It also enhances translation in a heterologous translation system and thus represents the first non-canonical translation enhancing factor to be found in a protozoan. Our results implicate PTEF in regulating placental CSA binding of infected erythrocytes.


Assuntos
Antígenos de Protozoários/genética , Regulação da Expressão Gênica , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Calpaína/metabolismo , Sulfatos de Condroitina , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Fases de Leitura Aberta , Placenta/metabolismo , Plasmodium/metabolismo , Plasmodium falciparum/metabolismo , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Biossíntese de Proteínas , Proteólise , Proteínas de Protozoários/genética
17.
Malar J ; 15(1): 416, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531359

RESUMO

BACKGROUND: Individuals living in endemic areas gradually acquire natural immunity to clinical malaria, largely dependent on antibodies against parasite antigens. There are many studies indicating that the variant antigen PfEMP1 at the surface of the parasitized red blood cell (pRBC) is one of the major targets of the immune response. It is believed that antibodies against PfEMP1 confer protection by blocking sequestration (rosetting and cytoadherence), inducing antibody-dependent cellular-inhibitory effect and opsonizing pRBCs for phagocytosis. METHODS: A recombinant NTS-DBL1α domain from a rosette-mediating PfEMP1 was expressed in Escherichia coli. The resulting protein was purified and used for immunization to generate polyclonal (goat) and monoclonal (mouse) antibodies. The antibodies' ability to opsonize and induce phagocytosis in vitro was tested and contrasted with the presence of opsonizing antibodies naturally acquired during Plasmodium falciparum infection. RESULTS: All antibodies recognized the recombinant antigen and the surface of live pRBCs, however, their capacity to opsonize the pRBCs for phagocytosis varied. The monoclonal antibodies isotyped as IgG2b did not induce phagocytosis, while those isotyped as IgG2a were in general very effective, inducing phagocytosis with similar levels as those naturally acquired during P. falciparum infection. These monoclonal antibodies displayed different patterns, some of them showing a concentration-dependent activity while others showed a prozone-like effect. The goat polyclonal antibodies were not able to induce phagocytosis. CONCLUSION: Immunization with an NTS-DBL1-α domain of PfEMP1 generates antibodies that not only have a biological role in rosette disruption but also effectively induce opsonization for phagocytosis of pRBCs with similar activity to naturally acquired antibodies from immune individuals living in a malaria endemic area. Some of the antibodies with high opsonizing activity were not able to disrupt rosettes, indicating that epitopes of the NTS-DBL1-α other than those involved in rosetting are exposed on the pRBC surface and are able to induce functional antibodies. The ability to induce phagocytosis largely depended on the antibody isotype and on the ability to recognize the surface of the pRBC regardless of the rosette-disrupting capacity.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/imunologia , Proteínas Opsonizantes/sangue , Fagocitose , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cabras , Vacinas Antimaláricas/administração & dosagem , Camundongos , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
18.
Sci Rep ; 6: 29317, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27403804

RESUMO

The spread of artemisinin-resistant parasites could lead to higher incidence of patients with malaria complications. However, there are no current treatments that directly dislodge sequestered parasites from the microvasculature. We show that four common antiplasmodial drugs do not disperse rosettes (erythrocyte clusters formed by malaria parasites) and therefore develop a cell-based high-throughput assay to identify potential rosette-disrupting compounds. A pilot screen of 2693 compounds identified Malaria Box compound MMV006764 as a potential candidate. Although it reduced rosetting by a modest 20%, MMV006764 was validated to be similarly effective against both blood group O and A rosettes of three laboratory parasite lines. Coupled with its antiplasmodial activity and drug-likeness, MMV006764 represents the first small-molecule compound that disrupts rosetting and could potentially be used in a resource-limited setting to treat patients deteriorating rapidly from malaria complications. Such dual-action drugs that simultaneously restore microcirculation and reduce parasite load could significantly reduce malaria morbidity and mortality.


Assuntos
Antimaláricos/química , Eritrócitos/parasitologia , Ensaios de Triagem em Larga Escala/métodos , Malária Cerebral/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Piridinas/química , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Descoberta de Drogas , Resistência a Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Humanos , Microcirculação , Microvasos/patologia , Carga Parasitária , Piridinas/farmacologia , Piridinas/uso terapêutico
19.
PLoS One ; 8(1): e52679, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335956

RESUMO

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1α previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1α-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1α antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Proteínas de Protozoários/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/metabolismo , Especificidade de Anticorpos , Antígenos de Protozoários/química , Pré-Escolar , Reações Cruzadas/imunologia , Epitopos/química , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Lactente , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Ligação Proteica/imunologia , Conformação Proteica , Proteínas de Protozoários/química , Coelhos , Ratos
20.
PLoS One ; 7(12): e50758, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227205

RESUMO

The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.


Assuntos
Epitopos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Formação de Roseta , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Sobrevivência Celular , Biologia Computacional , Sequência Conservada , Doenças Endêmicas , Eritrócitos/parasitologia , Cabras , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...