Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parasit Dis ; 48(1): 81-94, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440753

RESUMO

Seven 3-styrylcoumarins were tested for antileishmanial activity against Leishmania (Viannia) panamensis amastigotes. Cytotoxic activity was also evaluated against mammalian U-937 cells. The 3-methoxy-4-hydroxy coumarin derivative 6 was the most active with an IC50 of 40.5 µM, and did not reveal any conspicuous toxicity toward mammalian U-937 cells. Therefore, it may have potential to be considered as candidate for antileishmanial drug development. Further, among several druggable Leishmania targets, molecular docking studies revealed that compound 6 had docking preference by the N-myristoyltransferase (Lp-NMT) of Leishmania panamensis, showing a higher docking score of - 10.1 kcal mol-1 than positive controls and making this protein as a presumably druggable target for this compound. On the other hand, molecular dynamics simulations affirm the docking hypothesis, showing a conformational stability of the 6/Lp-NMT complex throughout 100 ns simulation. Moreover, the molecular mechanics/Poisson-Boltzmann surface area method also support the docking findings, revealing a total free energy of binding of - 47.26 ± 0.08 kcal mol-1, and identifying through energy decomposition analysis that those key aminoacids are contributing strongly to ligand binding. Finally, an optimal pharmacokinetic profile was also estimated for 6. Altogether, coumarin 6 could be addressed as starting point for further pharmacological studies concerning the therapeutic leishmaniasis intervention.

2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297411

RESUMO

A series of 5-FU-Genistein hybrids were synthesized and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated in human colon adenocarcinoma cells (SW480 and SW620) and non-malignant cell lines (HaCaT and CHO-K1). Hybrid 4a displayed cytotoxicity against SW480 and SW620 cells with IC50 values of 62.73 ± 7.26 µM and 50.58 ± 1.33 µM, respectively; compound 4g induced cytotoxicity in SW620 cells with an IC50 value of 36.84 ± 0.71 µM. These compounds were even more selective than genistein alone, the reference drug (5-FU) and the equimolar mixture of genistein plus 5-FU. In addition, hybrids 4a and 4g induced time- and concentration-dependent antiproliferative activity and cell cycle arrest at the S-phase and G2/M. It was also observed that hybrid 4a induced apoptosis in SW620 cells probably triggered by the extrinsic pathway in response to the activation of p53, as evidenced by the increase in the levels of caspases 3/8 and the tumor suppressor protein (Tp53). Molecular docking studies suggest that the most active compound 4a would bind efficiently to proapoptotic human caspases 3/8 and human Tp53, which in turn could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. On the other hand, molecular dynamics (MD) studies provided strong evidence of the conformational stability of the complex between caspase-3 and hybrid 4a obtained throughout 100 ns all-atom MD simulation. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of the complex with caspase-3 showed that the interaction between the ligand and the target protein is stable. Altogether, the results suggest that the active hybrids, mainly compound 4a, might act by modulating caspase-3 activity in a colorectal cancer model, making it a privileged scaffold that could be used in future investigations.

3.
ACS Chem Neurosci ; 13(18): 2681-2698, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074422

RESUMO

As a contribution to the development of new dual/multifunctional drugs, a novel therapeutical scaffold merging key structural features from memantine and M30D was designed, synthesized, and explored for its AChE/BuChE inhibitory activity and neuroprotective effects. All synthetized hybrids were not able to inhibit AChE, but most of them exhibit inhibition with high selectivity toward butyrylcholinesterase (BuChE). Notably, among the tested compounds, amantadine/M30D hybrids with six, seven, nine, and twelve methylene groups in the spacer (5d, 5e, 5f, and 5g) not only highlighted having the best potency and selective butyrylcholinesterase inhibition greater than 83% but also, particularly 5e and 5d, elicited considerable neuroprotection when evaluated in pretreatment conditions, by reducing injury effects caused by glutamate with maximum protection reached about 47.82 ± 0.81% (5e) and 42 ± 2.20% (5d) in comparison with memantine (37.27 ± 2.69%). Likewise, we chose 5e as the hit compound, which in a glutamate excitotoxity coculture model prevented astroglia reactivity and neuronal death, as well as a 91% restoration of calcium levels and an increasing ATP level in both pre-/post-treatments of 61.48 ± 4.60 and 45.16 ± 10.55%, respectively. Regarding docking studies, a blockade of the NMDA channel pore by 5e would explain its neuroprotective response. Finally, the hit compound 5e exhibited in vitro blood-brain barrier (BBB) permeability and human plasma stability, as well as an optimal in silico neuropharmacokinetic profile. From a therapeutic perspective, merging key pharmacophoric features from memantine and M30D provides a new medicinal scaffold with dual-/multifunctional properties and human plasma stability for the future development of potential drugs for treating AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Cálcio , Inibidores da Colinesterase/uso terapêutico , Glutamatos , Humanos , Memantina/farmacologia , Memantina/uso terapêutico , Simulação de Acoplamento Molecular , N-Metilaspartato , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
4.
J Mol Struct ; 1254: 132369, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35034979

RESUMO

By 24th Sep. 2021, there are more than 229 million COVID-19 cases worldwide, the researchers are tirelessly working to discover and develop an efficient drug molecule against this devastative viral infection. This study aims to evaluate the inhibitory efficiency of the organic acids and phenolic compounds present in Brassica oleracea (Tronchuda Cabbage) against spike glycoprotein in SARS-CoV-2. Thirty-seven phytocompounds are screened on the basis of their molecular weight (<500 g/mol) and 14 ligands are docked using Autodock Vina and Autodock4 (version 4.2.6). The stability of the top five docked complexes was analyzed using classical molecular dynamics (MD) simulation. ADMET analysis is performed for the top five compounds and their targets are identified using SwissTargetPrediction. Phytoactives from B. oleracea namely Astragalin, 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid and sinapoyl-D-glucoside showed high binding affinities and free energy of binding during molecular docking and MD simulation studies (∼ 8.5-9.0 kcal/mol) for the spike glycoprotein trimer of SARS-CoV2. The ADMET analysis revealed that these phytocompounds have good solubility in the aqueous phase and that they don't penetrate the blood brain barrier. Moreover, there is no P-gp substrate inhibition, CYP1A2 inhibition, CYP2C19 inhibition, CYP2C9 inhibition, CYP2D6 inhibition and CYP3A4 inhibition observed for these compounds. Additionally, zero PAINS alerts were reported. These findings from molecular docking and MD simulation studies suggest that astragalin and coumaroylquinic acids from Tronchuda cabbage possess potential inhibitory capacity against spike glycoprotein trimer of SARS-CoV-2 and could be further taken up as lead targets for drug discovery.

5.
J Biomol Struct Dyn ; 40(5): 2227-2243, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33118480

RESUMO

COVID-19 is a novel severe acute respiratory syndrome coronavirus. Currently, there is no effective treatment and vaccines seem to be the solution in the future. Virtual screening of potential drugs against the S protein of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has provided small molecular compounds with a high binding affinity. Unfortunately, most of these drugs do not attach with the binding interface of the receptor-binding domain (RBD)-angiotensin-converting enzyme-2 (ACE-2) complex in host cells. Molecular modeling was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (cat's claw) focusing on the binding interface of the RBD-ACE-2 and the viral spike protein. The in silico approach starts with protein-ligand docking of 26 Cat's claw key components followed by molecular dynamics simulations and re-docked calculations. Finally, we carried out drug-likeness calculations for the most qualified cat's claw components. The structural bioinformatics approaches led to the identification of several bioactive compounds of U. tomentosa with potential therapeutic effect by dual strong interaction with interface of the RBD-ACE-2 and the ACE-2 binding site on SARS-CoV-2 RBD viral spike. In addition, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals found in U. tomentosa (cat's claw). Our findings suggest the potential effectiveness of cat's claw as complementary and/or alternative medicine for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Unha-de-Gato , Plantas Medicinais , Unha-de-Gato/química , Medicina Herbária , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Artigo em Inglês | MEDLINE | ID: mdl-33163084

RESUMO

Carvacrol is a phenol monoterpene found in aromatic plants specially in Lamiaceae family, which has been evaluated in an experimental model of breast cancer. However, any proposed mechanism based on its antitumor effect has not been reported. In our previous study, carvacrol showed a protective effect on 7,12-dimethylbenz[α]anthracene- (DMBA-) induced breast cancer in female rats. The main objective in this research was to evaluate by using in silico study the carvacrol on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR receptors involved in breast cancer progression by docking analysis, molecular dynamic, and drug-likeness evaluation. A multilevel computational study to evaluate the antitumor potential of carvacrol focusing on the main targets involved in the breast cancer was carried out. The in silico study starts with protein-ligand docking of carvacrol followed by ligand pathway calculations, molecular dynamic simulations, and molecular mechanics energies combined with the Poisson-Boltzmann (MM/PBSA) calculation of the free energy of binding for carvacrol. As result, the in silico study led to the identification of carvacrol with strong binding affinity on mTOR receptor. Additionally, in silico drug-likeness index for carvacrol showed a good predicted therapeutic profile of druggability. Our findings suggest that mTOR signaling pathway could be responsible for its preventive effect in the breast cancer.

7.
Phys Chem Chem Phys ; 19(38): 26179-26190, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28930314

RESUMO

We have carried out a computational study on the reactivity of catechol (1,2-dihydroxybenzene) towards superoxide radical anion (O2˙-) in water, N,N-dimethylformamide (DMF), pentyl ethanoate (PEA) and vacuum using density functional theory and the coupled cluster method. Five reaction mechanisms were studied: (i) sequential proton transfer followed by hydrogen atom transfer (PT-HT), (ii) sequential hydrogen atom transfer followed by proton transfer (HT-PT), (iii) single electron transfer (SET), (iv) radical adduct formation (RAF) and (v) concerted double proton-transfer electron-transfer (denoted as global reaction, GR). Our results show that catechol and superoxide do not react via a sequential reaction mechanism (initial PT, initial HAT or SET). Instead, the reaction proceeds via a concerted double proton-transfer electron-transfer mechanism yielding hydrogen peroxide and catechol radical anion. The protons are transferred asynchronously between the σ orbitals of the catechol oxygen atoms to superoxide, while the electron is transferred between oxygen π orbitals in the same direction. The calculated rate constants in aqueous media agree with the experimental values reported in the literature. This suggests that the mechanism proposed in this work is adequate to describe this reaction. In addition, our results show that the reaction exhibits a large tunneling effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...