Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 24(7): 1040-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25866296

RESUMO

Ion-dipole interactions in biological macromolecules are formed between atomic or molecular ions and neutral protein dipolar groups through either hydrogen bond or coordination. Since their discovery 30 years ago, these interactions have proven to be a frequent occurrence in protein structures, appearing in everything from transporters and ion channels to enzyme active sites to protein-protein interfaces. However, their significance and roles in protein functions are largely underappreciated. We performed PDB data mining to identify a sampling of proteins that possess these interactions. In this review, we will define the ion-dipole interaction and discuss several prominent examples of their functional roles in nature.


Assuntos
Íons/química , Proteínas/química , Regulação Alostérica , Animais , Humanos , Íons/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Proteínas/metabolismo
2.
J Biol Chem ; 289(48): 33287-95, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25301948

RESUMO

Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼ 55 µM. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Ácido Graxo Sintases/química , Inibidores da Síntese de Ácidos Graxos/química , Triclosan/química , Regulação Alostérica , Cristalografia por Raios X , Humanos , Cinética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
3.
J Cell Biol ; 205(1): 21-31, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24733584

RESUMO

Most chemical neurotransmission occurs through Ca(2+)-dependent evoked or spontaneous vesicle exocytosis. In both cases, Ca(2+) sensing is thought to occur shortly before exocytosis. In this paper, we provide evidence that the Ca(2+) dependence of spontaneous vesicle release may partly result from an earlier requirement of Ca(2+) for the assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) complexes. We show that the neuronal vacuolar-type H(+)-adenosine triphosphatase V0 subunit a1 (V100) can regulate the formation of SNARE complexes in a Ca(2+)-Calmodulin (CaM)-dependent manner. Ca(2+)-CaM regulation of V100 is not required for vesicle acidification. Specific disruption of the Ca(2+)-dependent regulation of V100 by CaM led to a >90% loss of spontaneous release but only had a mild effect on evoked release at Drosophila melanogaster embryo neuromuscular junctions. Our data suggest that Ca(2+)-CaM regulation of V100 may control SNARE complex assembly for a subset of synaptic vesicles that sustain spontaneous release.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Junção Neuromuscular/enzimologia , Proteínas Qa-SNARE/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Complexos Multiproteicos , Ligação Proteica , Subunidades Proteicas , Proteínas Qa-SNARE/genética , Fatores de Tempo , ATPases Vacuolares Próton-Translocadoras/genética
4.
J Biol Chem ; 288(42): 30682-30692, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24022486

RESUMO

Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.


Assuntos
Ciclina A/química , Quinase 2 Dependente de Ciclina/química , Quinases Ciclina-Dependentes/química , Ciclinas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Ciclina A/genética , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Fosforilação/fisiologia , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
5.
Nat Commun ; 4: 1704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23591871

RESUMO

The fundamental processes of membrane fission and fusion determine size and copy numbers of intracellular organelles. Although SNARE proteins and tethering complexes mediate intracellular membrane fusion, fission requires the presence of dynamin or dynamin-related proteins. Here we study these reactions in native yeast vacuoles and find that the yeast dynamin homologue Vps1 is not only an essential part of the fission machinery, but also controls membrane fusion by generating an active Qa SNARE-tethering complex pool, which is essential for trans-SNARE formation. Our findings provide new insight into the role of dynamins in membrane fusion by directly acting on SNARE proteins.


Assuntos
Dinaminas/metabolismo , Fusão de Membrana , Proteínas SNARE/metabolismo , Dinaminas/fisiologia , Ligação Proteica , Proteínas SNARE/fisiologia
6.
PLoS Genet ; 8(11): e1003083, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209439

RESUMO

Chloroquine (CQ) and other quinoline-containing antimalarials are important drugs with many therapeutic benefits as well as adverse effects. However, the molecular targets underlying most such effects are largely unknown. By taking a novel functional genomics strategy, which employs a unique combination of genome-wide drug-gene synthetic lethality (DGSL), gene-gene synthetic lethality (GGSL), and dosage suppression (DS) screens in the model organism Saccharomyces cerevisiae and is thus termed SL/DS for simplicity, we found that CQ inhibits the thiamine transporters Thi7, Nrt1, and Thi72 in yeast. We first discovered a thi3Δ mutant as hypersensitive to CQ using a genome-wide DGSL analysis. Using genome-wide GGSL and DS screens, we then found that a thi7Δ mutation confers severe growth defect in the thi3Δ mutant and that THI7 overexpression suppresses CQ-hypersensitivity of this mutant. We subsequently showed that CQ inhibits the functions of Thi7 and its homologues Nrt1 and Thi72. In particular, the transporter activity of wild-type Thi7 but not a CQ-resistant mutant (Thi7(T287N)) was completely inhibited by the drug. Similar effects were also observed with other quinoline-containing antimalarials. In addition, CQ completely inhibited a human thiamine transporter (SLC19A3) expressed in yeast and significantly inhibited thiamine uptake in cultured human cell lines. Therefore, inhibition of thiamine uptake is a conserved mechanism of action of CQ. This study also demonstrated SL/DS as a uniquely effective methodology for discovering drug targets.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Proteínas de Transporte de Nucleosídeos , Proteínas de Saccharomyces cerevisiae , Tiamina/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Expressão Gênica , Genômica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Proteínas de Transporte de Nucleosídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 287(23): 19487-500, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22496448

RESUMO

Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.


Assuntos
Endossomos/enzimologia , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/enzimologia , Motivos de Aminoácidos , Endossomos/genética , Evolução Molecular , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia Estrutural de Proteína , ATPases Vacuolares Próton-Translocadoras/genética , Rede trans-Golgi/genética
8.
Proc Natl Acad Sci U S A ; 108(38): 15757-62, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21908709

RESUMO

Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the 1.48 Å crystal structure of the hFAS TE domain covalently modified and inactivated by methyl γ-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated γ-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an α helix (the "helix flap"). We then found inhibition of the TE domain activity by the PUFA dihomo-γ-linolenic acid; γ- and α-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-γ-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Ácido Graxo Sintases/química , Ácidos Graxos Insaturados/química , Estrutura Terciária de Proteína , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Cristalização , Cristalografia por Raios X , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos Insaturados/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ácido alfa-Linolênico/farmacologia
9.
J Mol Biol ; 412(1): 14-21, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21787787

RESUMO

Subunit "a" is associated with the membrane-bound (V(O)) complex of eukaryotic vacuolar H(+)-ATPase acidification machinery. It has also been shown recently to be involved in diverse membrane fusion/secretory functions independent of acidification. Here, we report the crystal structure of the N-terminal cytosolic domain from the Meiothermus ruber subunit "I" homolog of subunit a. The structure is composed of a curved long central α-helix bundle capped on both ends by two lobes with similar α/ß architecture. Based on the structure, a reasonable model of its eukaryotic subunit a counterpart was obtained. The crystal structure and model fit well into reconstructions from electron microscopy of prokaryotic and eukaryotic vacuolar H(+)-ATPases, respectively, clarifying their orientations and interactions and revealing features that could enable subunit a to play a role in membrane fusion/secretion.


Assuntos
Cristalografia por Raios X/métodos , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sítios de Ligação , Calmodulina/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas SNARE/metabolismo , Thermus/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética
10.
Mol Biol Cell ; 21(4): 610-29, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20016007

RESUMO

Dynamins are large GTPases that oligomerize along membranes. Dynamin's membrane fission activity is believed to underlie many of its physiological functions in membrane trafficking. Previously, we reported that DYN-1 (Caenorhabditis elegans dynamin) drove the engulfment and degradation of apoptotic cells through promoting the recruitment and fusion of intracellular vesicles to phagocytic cups and phagosomes, an activity distinct from dynamin's well-known membrane fission activity. Here, we have detected the oligomerization of DYN-1 in living C. elegans embryos and identified DYN-1 mutations that abolish DYN-1's oligomerization or GTPase activities. Specifically, abolishing self-assembly destroys DYN-1's association with the surfaces of extending pseudopods and maturing phagosomes, whereas inactivating guanosine triphosphate (GTP) binding blocks the dissociation of DYN-1 from these membranes. Abolishing the self-assembly or GTPase activities of DYN-1 leads to common as well as differential phagosomal maturation defects. Whereas both types of mutations cause delays in the transient enrichment of the RAB-5 GTPase to phagosomal surfaces, only the self-assembly mutation but not GTP binding mutation causes failure in recruiting the RAB-7 GTPase to phagosomal surfaces. We propose that during cell corpse removal, dynamin's self-assembly and GTP hydrolysis activities establish a precise dynamic control of DYN-1's transient association to its target membranes and that this control mechanism underlies the dynamic recruitment of downstream effectors to target membranes.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Dinaminas/metabolismo , Guanosina Trifosfato/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Dinaminas/química , Dinaminas/genética , Humanos , Dados de Sequência Molecular , Mutação , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
11.
Biochemistry ; 49(3): 547-59, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20000741

RESUMO

The organophosphate acid anhydrolase (OPAA) is a member of a class of bimetalloenzymes that hydrolyze a variety of toxic acetylcholinesterase-inhibiting organophosphorus compounds, including fluorine-containing chemical nerve agents. It also belongs to a family of prolidases, with significant activity against various Xaa-Pro dipeptides. Here we report the X-ray structure determination of the native OPAA (58 kDa mass) from Alteromonas sp. strain JD6.5 and its cocrystal with the inhibitor mipafox [N,N'-diisopropyldiamidofluorophosphate (DDFP)], a close analogue of the nerve agent organophosphate substrate diisopropyl fluorophosphate (DFP). The OPAA structure is composed of two domains, amino and carboxy domains, with the latter exhibiting a "pita bread" architecture and harboring the active site with the binuclear Mn(2+) ions. The native OPAA structure revealed unexpectedly the presence of a well-defined nonproteinaceous density in the active site whose identity could not be definitively established but is suggestive of a bound glycolate, which is isosteric with a glycine (Xaa) product. All three glycolate oxygens coordinate the two Mn(2+) atoms. DDFP or more likely its hydrolysis product, N,N'-diisopropyldiamidophosphate (DDP), is present in the cocrystal structure and bound by coordinating the binuclear metals and forming hydrogen bonds and nonpolar interactions with active site residues. An unusual common feature of the binding of the two ligands is the involvement of only one oxygen atom of the glycolate carboxylate and the product DDP tetrahedral phosphate in bridging the two Mn(2+) ions. Both structures provide new understanding of ligand recognition and the prolidase and organophosphorus hydrolase catalytic activities of OPAA.


Assuntos
Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Substâncias para a Guerra Química/metabolismo , Dipeptidases/química , Dipeptidases/metabolismo , Alteromonas/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Substâncias para a Guerra Química/química , Cristalografia por Raios X , Hidrólise , Conformação Proteica , Relação Estrutura-Atividade
12.
J Biol Chem ; 284(30): 20041-51, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19473981

RESUMO

Calmodulin binds to IQ motifs in the alpha(1) subunit of Ca(V)1.1 and Ca(V)1.2, but the affinities of calmodulin for the motif and for Ca(2+) are higher when bound to Ca(V)1.2 IQ. The Ca(V)1.1 IQ and Ca(V)1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to Ca(V)1.1 IQ and compared it with that of calmodulin bound to Ca(V)1.2 IQ. Four methionines in Ca(2+)-calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of Ca(V)1.1 and Tyr-1675 of Ca(V)1.2) contacts this calmodulin pocket. However, Tyr-1675 in Ca(V)1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in Ca(V)1.2 contribute significantly to the difference in the Ca(2+) affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca(2+)-bound and one lobe Ca(2+)-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to Ca(V)1.2.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cálcio/química , Calmodulina/química , Calmodulina/genética , Cristalografia por Raios X , Humanos , Mamíferos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
13.
Proc Natl Acad Sci U S A ; 106(13): 5135-40, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279214

RESUMO

Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.


Assuntos
Canais de Cálcio Tipo L/química , Calmodulina/química , Proteínas de Ligação ao Cálcio/química , Cristalografia por Raios X , Dimerização , Humanos , Mutação Puntual , Estrutura Terciária de Proteína
14.
Nucleic Acids Res ; 36(10): 3287-96, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424798

RESUMO

I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic mechanism, we determined the X-ray structures of I-SceI in complex with DNA substrates that are nicked in either the top or bottom strands. The structures resemble intermediates along the DNA cleavage reaction. In a structure containing a nick in the top strand, the spatial arrangement of metal ions is similar to that observed in the structure that contains uncleaved DNA, suggesting that cleavage of the bottom strand occurs by a common mechanism regardless of whether this strand is cleaved first or second. In the structure containing a nick in the bottom strand, a new metal binding site is present in the active site that cleaves the top strand. This new metal and a candidate nucleophilic water molecule are correctly positioned to cleave the top strand following bottom strand cleavage, providing a plausible mechanism for top strand cleavage.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Modelos Moleculares , Sítios de Ligação , Cálcio/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Conformação Proteica , Proteínas de Saccharomyces cerevisiae
15.
J Biol Chem ; 283(1): 294-300, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17933871

RESUMO

The V(0) complex forms the proteolipid pore of a vesicular ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been suggested in vacuolar fusion in yeast and synaptic vesicle exocytosis in fly neurons. Evidence for a direct role in secretion has also recently been presented in mouse and worm. The molecular mechanisms of how the V(0) components might act or are regulated are largely unknown. Here we report the identification and characterization of a calmodulin-binding site in the large cytosolic N-terminal region of the Drosophila protein V100, the neuron-specific V(0) subunit a1. V100 forms a tight complex with calmodulin in a Ca(2+)-dependent manner. Mutations in the calmodulin-binding site in Drosophila lead to a loss of calmodulin recruitment to synapses. Neuronal expression of a calmodulin-binding deficient V100 uncovers an incomplete rescue at low levels and cellular toxicity at high levels. Our results suggest a vesicular ATPase V(0)-dependent function of calmodulin at synapses.


Assuntos
Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cromatografia em Gel , Drosophila/citologia , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Imuno-Histoquímica , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Sinapses/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
16.
Nat Chem Biol ; 4(1): 25-32, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18059263

RESUMO

When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/antagonistas & inibidores , Fosfatos de Inositol , Proteínas Repressoras/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Ensaio de Desvio de Mobilidade Eletroforética , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacologia , Fosfatos de Inositol/fisiologia , Ligação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Fatores de Transcrição/antagonistas & inibidores
17.
Proteins ; 70(4): 1228-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17847090

RESUMO

Human fatty acid synthase (hFAS) thioesterase domain (TE) is an attractive drug target to treat obesity and cancer. On the basis of the recently published crystal structure of TE domain of hFAS, we performed molecular surface analysis and docking study to characterize the molecular interactions between the enzyme and its various ligands. Surface analysis identified the ligand-binding pocket of TE domain that encompasses the catalytic triad of Ser2308, His2481, Asp2338. Docking of palmitate, the main biological product of hFAS, into this pocket revealed the ligand-binding mode, in which the hydrophobic interactions are the dominant driving forces. The catalytic mechanism of TE domain can also be well explained based on the generated TE-palmitate complex structure. Moreover, the comparison of the binding modes of five fatty acids with chain lengths ranging from 12 to 20 carbons confirmed that the ligand binding pocket of TE domain is a decisive factor in chain length specificity. In addition, docking of two known TE inhibitors, c75 and orlistat revealed the pharmacophore of these hFAS TE inhibitors, which will prove useful in structure-based drug design against this important target.


Assuntos
Simulação por Computador , Ácido Graxo Sintase Tipo I/química , Modelos Moleculares , Sítios de Ligação , Domínio Catalítico , Humanos , Ligantes , Palmitatos , Ligação Proteica , Estrutura Terciária de Proteína
18.
Mol Cell ; 28(4): 614-23, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18042456

RESUMO

The ability to sense and respond appropriately to environmental changes is a primary requirement of all living organisms. In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes involved in the regulation of phosphate acquisition from the ambient environment. A signal transduction pathway (the PHO pathway) mediates this response, with Pho85-Pho80 playing a vital role. Here we report the X-ray structure of Pho85-Pho80, a prototypic structure of a CDK-cyclin complex functioning in transcriptional regulation in response to environmental changes. The structure revealed a specific salt link between a Pho85 arginine and a Pho80 aspartate that makes phosphorylation of the Pho85 activation loop dispensable and that maintains a Pho80 loop conformation for possible substrate recognition. It further showed two sites on the Pho80 cyclin for high-affinity binding of the transcription factor substrate (Pho4) and the CDK inhibitor (Pho81) that are markedly distant to each other and the active site.


Assuntos
Quinases Ciclina-Dependentes/química , Ciclinas/química , Fosfatos/farmacologia , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Fenilalanina , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Fatores de Transcrição/metabolismo
19.
Nature ; 450(7169): 515-21, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-18033289

RESUMO

The maltose uptake system of Escherichia coli is a well-characterized member of the ATP-binding cassette transporter superfamily. Here we present the 2.8-A crystal structure of the intact maltose transporter in complex with the maltose-binding protein, maltose and ATP. This structure, stabilized by a mutation that prevents ATP hydrolysis, captures the ATP-binding cassette dimer in a closed, ATP-bound conformation. Maltose is occluded within a solvent-filled cavity at the interface of the two transmembrane subunits, about halfway into the lipid bilayer. The binding protein docks onto the entrance of the cavity in an open conformation and serves as a cap to ensure unidirectional translocation of the sugar molecule. These results provide direct evidence for a concerted mechanism of transport in which solute is transferred from the binding protein to the transmembrane subunits when the cassette dimer closes to hydrolyse ATP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catálise , Membrana Celular/metabolismo , Cristalização , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólise , Proteínas Ligantes de Maltose , Modelos Biológicos , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação/genética , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 104(19): 7869-74, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470791

RESUMO

Here we report a normal-mode-based protocol for modeling anisotropic thermal motions of proteins in x-ray crystallographic refinement. The foundation for this protocol is a recently developed elastic normal mode analysis that produces much more accurate eigenvectors without the tip effect. The effectiveness of the procedure is demonstrated on the refinement of a 3.42-A structure of formiminotransferase cyclodeaminase, a 0.5-MDa homooctameric enzyme. Using an order of magnitude fewer adjustable thermal parameters than the conventional isotropic refinement, this protocol resulted in a decrease of the values of R(cryst) and R(free) and improvements of the density map. Several poorly resolved regions in the original isotropically refined structure became clearer so that missing side chains were fitted easily and mistraced backbone was corrected. Moreover, the distribution of anisotropic thermal ellipsoids revealed functionally important structure flexibility. This normal-mode-based refinement is an effective way of describing anisotropic thermal motions in x-ray structures and is particularly attractive for the refinement of very large and flexible supramolecular complexes at moderate resolutions.


Assuntos
Amônia-Liases/química , Glutamato Formimidoiltransferase/química , Anisotropia , Cristalografia por Raios X , Modelos Moleculares , Enzimas Multifuncionais , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...